Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Scott Marshall is active.

Publication


Featured researches published by M. Scott Marshall.


graph drawing | 2001

GraphML Progress Report Structural Layer Proposal

Ulrik Brandes; Markus Eiglsperger; Ivan Herman; Michael Himsolt; M. Scott Marshall

Following a workshop on graph data formats held with the 8th Symposium on Graph Drawing (GD 2000), a task group was formed to propose a format for graphs and graph drawings that meets current and projected requirements. On behalf of this task group, we here present GraphML (Graph Markup Language), an XML format for graph structures, as an initial step towards this goal. Its main characteristic is a unique mechanism that allows to de.ne extension modules for additional data, such as graph drawing information or data specific to a particular application. These modules can freely be combined or stripped without affecting the graph structure, so that information can be added (or omitted) in a well-defined way.


Journal of Cheminformatics | 2011

Linked open drug data for pharmaceutical research and development

Matthias Samwald; Anja Jentzsch; Christopher Bouton; Claus Stie Kallesøe; Egon Willighagen; Janos Hajagos; M. Scott Marshall; Eric Prud'hommeaux; Oktie Hassanzadeh; Elgar Pichler; Susie Stephens

There is an abundance of information about drugs available on the Web. Data sources range from medicinal chemistry results, over the impact of drugs on gene expression, to the outcomes of drugs in clinical trials. These data are typically not connected together, which reduces the ease with which insights can be gained. Linking Open Drug Data (LODD) is a task force within the World Wide Web Consortiums (W3C) Health Care and Life Sciences Interest Group (HCLS IG). LODD has surveyed publicly available data about drugs, created Linked Data representations of the data sets, and identified interesting scientific and business questions that can be answered once the data sets are connected. The task force provides recommendations for the best practices of exposing data in a Linked Data representation. In this paper, we present past and ongoing work of LODD and discuss the growing importance of Linked Data as a foundation for pharmaceutical R&D data sharing.


Radiotherapy and Oncology | 2013

‘Rapid Learning health care in oncology’ – An approach towards decision support systems enabling customised radiotherapy’ ☆ ☆☆

Philippe Lambin; Erik Roelofs; Bart Reymen; Emmanuel Rios Velazquez; J. Buijsen; C.M.L. Zegers; S. Carvalho; R. Leijenaar; Georgi Nalbantov; Cary Oberije; M. Scott Marshall; Frank Hoebers; Esther G.C. Troost; Ruud G.P.M. van Stiphout; Wouter van Elmpt; Trudy van der Weijden; Liesbeth Boersma; Vincenzo Valentini; Andre Dekker

PURPOSE An overview of the Rapid Learning methodology, its results, and the potential impact on radiotherapy. MATERIAL AND RESULTS Rapid Learning methodology is divided into four phases. In the data phase, diverse data are collected about past patients, treatments used, and outcomes. Innovative information technologies that support semantic interoperability enable distributed learning and data sharing without additional burden on health care professionals and without the need for data to leave the hospital. In the knowledge phase, prediction models are developed for new data and treatment outcomes by applying machine learning methods to data. In the application phase, this knowledge is applied in clinical practice via novel decision support systems or via extensions of existing models such as Tumour Control Probability models. In the evaluation phase, the predictability of treatment outcomes allows the new knowledge to be evaluated by comparing predicted and actual outcomes. CONCLUSION Personalised or tailored cancer therapy ensures not only that patients receive an optimal treatment, but also that the right resources are being used for the right patients. Rapid Learning approaches combined with evidence based medicine are expected to improve the predictability of outcome and radiotherapy is the ideal field to study the value of Rapid Learning. The next step will be to include patient preferences in the decision making.


Briefings in Bioinformatics | 2009

Life sciences on the Semantic Web: the Neurocommons and beyond

Alan Ruttenberg; Jonathan Rees; Matthias Samwald; M. Scott Marshall

Translational research, the effort to couple the results of basic research to clinical applications, depends on the ability to effectively answer questions using information that spans multiple disciplines. The Semantic Web, with its emphasis on combining information using standard representation languages, access to that information via standard web protocols, and technologies to leverage computation, such as in the form of inference and distributable query, offers a social and technological basis for assembling, integrating and making available biomedical knowledge at Web scale. In this article, we discuss the use of Semantic Web technology for assembling and querying biomedical knowledge from multiple sources and disciplines. We present the Neurocommons prototype knowledge base, a demonstration intended to show the feasibility and benefits of using these technologies. The prototype knowledge base can be used to experiment with and assess the scalability of current tools and methods for creating such a resource, and to elicit issues that will need to be addressed in order to expand the scope and use of it. We demonstrate the utility of the knowledge base by reviewing a few example queries that provide answers to precise questions relevant to the understanding of disease. All components of the knowledge base are freely available at http://neurocommons.org/, enabling readers to reconstruct the knowledge base and experiment with this new technology.


graph drawing | 2000

GraphXML - An XML-Based Graph Description Format

Ivan Herman; M. Scott Marshall

GraphXML is a graph description language in XML that can be used as an interchange format for graph drawing and visualization packages. The generality and rich features of XML make it possible to define an interchange format that not only supports the pure, mathematical description of a graph, but also the needs of information visualization applications that use graph--based data structures.


Journal of Biomedical Semantics | 2014

BioHackathon series in 2011 and 2012: penetration of ontology and linked data in life science domains

Toshiaki Katayama; Mark D. Wilkinson; Kiyoko F. Aoki-Kinoshita; Shuichi Kawashima; Yasunori Yamamoto; Atsuko Yamaguchi; Shinobu Okamoto; Shin Kawano; Jin Dong Kim; Yue Wang; Hongyan Wu; Yoshinobu Kano; Hiromasa Ono; Hidemasa Bono; Simon Kocbek; Jan Aerts; Yukie Akune; Erick Antezana; Kazuharu Arakawa; Bruno Aranda; Joachim Baran; Jerven T. Bolleman; Raoul J. P. Bonnal; Pier Luigi Buttigieg; Matthew Campbell; Yi An Chen; Hirokazu Chiba; Peter J. A. Cock; K. Bretonnel Cohen; Alexandru Constantin

The application of semantic technologies to the integration of biological data and the interoperability of bioinformatics analysis and visualization tools has been the common theme of a series of annual BioHackathons hosted in Japan for the past five years. Here we provide a review of the activities and outcomes from the BioHackathons held in 2011 in Kyoto and 2012 in Toyama. In order to efficiently implement semantic technologies in the life sciences, participants formed various sub-groups and worked on the following topics: Resource Description Framework (RDF) models for specific domains, text mining of the literature, ontology development, essential metadata for biological databases, platforms to enable efficient Semantic Web technology development and interoperability, and the development of applications for Semantic Web data. In this review, we briefly introduce the themes covered by these sub-groups. The observations made, conclusions drawn, and software development projects that emerged from these activities are discussed.


Drug Discovery Today | 2011

Empowering industrial research with shared biomedical vocabularies.

Lee Harland; Christopher Larminie; Susanna-Assunta Sansone; Sorana Popa; M. Scott Marshall; Michael Braxenthaler; Michael N. Cantor; Wendy Filsell; Mark J. Forster; Enoch S. Huang; Andreas Matern; Mark A. Musen; Jasmin Saric; Ted Slater; Jabe Wilson; Nick Lynch; John Wise; Ian Dix

The life science industries (including pharmaceuticals, agrochemicals and consumer goods) are exploring new business models for research and development that focus on external partnerships. In parallel, there is a desire to make better use of data obtained from sources such as human clinical samples to inform and support early research programmes. Success in both areas depends upon the successful integration of heterogeneous data from multiple providers and scientific domains, something that is already a major challenge within the industry. This issue is exacerbated by the absence of agreed standards that unambiguously identify the entities, processes and observations within experimental results. In this article we highlight the risks to future productivity that are associated with incomplete biological and chemical vocabularies and suggest a new model to address this long-standing issue.


Journal of Biomedical Semantics | 2011

Biomedical semantics in the Semantic Web

Andrea Splendiani; Albert Burger; Adrian Paschke; Paolo Romano; M. Scott Marshall

The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences?We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th.


graph drawing | 2000

Graph Data Format Workshop Report

Ulrik Brandes; M. Scott Marshall; Stephen C. North

Prompted by the increasing demand for a standard exchange format for graph data, an informal workshop was held in conjunction with Graph Drawing 2000. The participants identified requirements for such a standard and formed a group to work out a proposal. The current status of this effort is publicly available at http://www.graphdrawing.org/data/format/.


world congress on medical and health informatics, medinfo | 2013

An RDF/OWL knowledge base for query answering and decision support in clinical pharmacogenetics.

Matthias Samwald; Robert R. Freimuth; Joanne S. Luciano; Simon Lin; Robert L Powers; M. Scott Marshall; Klaus-Peter Adlassnig; Michel Dumontier; Richard D. Boyce

Genetic testing for personalizing pharmacotherapy is bound to become an important part of clinical routine. To address associated issues with data management and quality, we are creating a semantic knowledge base for clinical pharmacogenetics. The knowledge base is made up of three components: an expressive ontology formalized in the Web Ontology Language (OWL 2 DL), a Resource Description Framework (RDF) model for capturing detailed results of manual annotation of pharmacogenomic information in drug product labels, and an RDF conversion of relevant biomedical datasets. Our work goes beyond the state of the art in that it makes both automated reasoning as well as query answering as simple as possible, and the reasoning capabilities go beyond the capabilities of previously described ontologies.

Collaboration


Dive into the M. Scott Marshall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthias Samwald

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Marco Roos

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Eric Prud'hommeaux

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Adrian Paschke

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Zhao

University of Oxford

View shared research outputs
Top Co-Authors

Avatar

Paolo Romano

National Cancer Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge