Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Shahid Mukhtar is active.

Publication


Featured researches published by M. Shahid Mukhtar.


Science | 2011

Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network

M. Shahid Mukhtar; Anne-Ruxandra Carvunis; Matija Dreze; Petra Epple; Jens Steinbrenner; Jonathan D. Moore; Murat Tasan; Mary Galli; Tong Hao; Marc T. Nishimura; Samuel J. Pevzner; Susan E. Donovan; Lila Ghamsari; Balaji Santhanam; Viviana Romero; Matthew M. Poulin; Fana Gebreab; Bryan J. Gutierrez; Stanley Tam; Dario Monachello; Mike Boxem; Christopher J. Harbort; Nathan A. McDonald; Lantian Gai; Huaming Chen; Yijian He; Jean Vandenhaute; Frederick P. Roth; David E. Hill; Joseph R. Ecker

An analysis of protein-protein interactions in Arabidopsis identifies the plant interactome. Plants generate effective responses to infection by recognizing both conserved and variable pathogen-encoded molecules. Pathogens deploy virulence effector proteins into host cells, where they interact physically with host proteins to modulate defense. We generated an interaction network of plant-pathogen effectors from two pathogens spanning the eukaryote-eubacteria divergence, three classes of Arabidopsis immune system proteins, and ~8000 other Arabidopsis proteins. We noted convergence of effectors onto highly interconnected host proteins and indirect, rather than direct, connections between effectors and plant immune receptors. We demonstrated plant immune system functions for 15 of 17 tested host proteins that interact with effectors from both pathogens. Thus, pathogens from different kingdoms deploy independently evolved virulence proteins that interact with a limited set of highly connected cellular hubs to facilitate their diverse life-cycle strategies.


PLOS Pathogens | 2011

Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Pseudomonas syringae Isolates

David A. Baltrus; Marc T. Nishimura; Artur Romanchuk; Jeff H. Chang; M. Shahid Mukhtar; Karen Cherkis; Jeff Roach; Sarah R. Grant; Corbin D. Jones; Jeffery L. Dangl

Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs) are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species.


Planta | 2007

The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways

Bekir Ülker; M. Shahid Mukhtar; Imre E. Somssich

Regulatory proteins play critical roles in controlling the kinetics of various cellular processes during the entire life span of an organism. Leaf senescence, an integral part of the plant developmental program, is fine-tuned by a complex transcriptional regulatory network ensuring a successful switch to the terminal life phase. To expand our understanding on how transcriptional control coordinates leaf senescence, we characterized AtWRKY70, a gene encoding a WRKY transcription factor that functions as a negative regulator of developmental senescence. To gain insight into the interplay of senescence and plant defense signaling pathways, we employed a collection of mutants, allowing us to specifically define the role of AtWRKY70 in the salicylic acid-mediated signaling cascades and to further dissect the cross-talk of signal transduction pathways during the onset of senescence in Arabidopsis thaliana. Our results provide strong evidence that AtWRKY70 influences plant senescence and defense signaling pathways. These studies could form the basis for further unraveling of these two complex interlinked regulatory networks.


Molecular Plant Pathology | 2015

The Top 10 oomycete pathogens in molecular plant pathology

Sophien Kamoun; Oliver J. Furzer; Jonathan D. G. Jones; Howard S. Judelson; Gul Shad Ali; Ronaldo J. D. Dalio; Sanjoy Guha Roy; Leonardo Schena; Antonios Zambounis; Franck Panabières; David J. Cahill; Michelina Ruocco; Andreia Figueiredo; Xiao‐Ren Chen; Jon Hulvey; Remco Stam; Kurt Lamour; Mark Gijzen; Brett M. Tyler; Niklaus J. Grünwald; M. Shahid Mukhtar; Daniel F. A. Tomé; Mahmut Tör; Guido Van den Ackerveken; John M. McDowell; Fouad Daayf; William E. Fry; Hannele Lindqvist-Kreuze; Harold J. G. Meijer; Benjamin Petre

Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens which threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant-pathogenic oomycete species based on scientific and economic importance. In total, we received 263 votes from 62 scientists in 15 countries for a total of 33 species. The Top 10 species and their ranking are: (1) Phytophthora infestans; (2, tied) Hyaloperonospora arabidopsidis; (2, tied) Phytophthora ramorum; (4) Phytophthora sojae; (5) Phytophthora capsici; (6) Plasmopara viticola; (7) Phytophthora cinnamomi; (8, tied) Phytophthora parasitica; (8, tied) Pythium ultimum; and (10) Albugo candida. This article provides an introduction to these 10 taxa and a snapshot of current research. We hope that the list will serve as a benchmark for future trends in oomycete research.


Molecular Systems Biology | 2014

Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis

Karsten Klopffleisch; Nguyen Phan; Kelsey Augustin; Robert S. Bayne; Katherine S. Booker; José Ramón Botella; Nicholas C. Carpita; Tyrell Carr; Jin-Gui Chen; Thomas Ryan Cooke; Arwen Frick-Cheng; Erin J. Friedman; Brandon Fulk; Michael G. Hahn; Kun Jiang; Lucía Jordá; Lydia Kruppe; Chenggang Liu; Justine Lorek; Maureen C. McCann; Antonio Molina; Etsuko N. Moriyama; M. Shahid Mukhtar; Yashwanti Mudgil; Sivakumar Pattathil; John Schwarz; Steven Seta; Matthew Tan; Ulrike Temp; Yuri Trusov

The heterotrimeric G‐protein complex is minimally composed of Gα, Gβ, and Gγ subunits. In the classic scenario, the G‐protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G‐protein associates with heptahelical G‐protein‐coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G‐protein effectors and scaffold proteins, we screened a set of proteins from the G‐protein complex using two‐hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G‐protein interactome. Within this core, over half of the interactions comprising two‐thirds of the nodes were retested and validated as genuine in planta. Co‐expression analysis in combination with phenotyping of loss‐of‐function mutations in a set of core interactome genes revealed a novel role for G‐proteins in regulating cell wall modification.


PLOS ONE | 2012

IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses

Adrián A. Moreno; M. Shahid Mukhtar; Francisca Blanco; Jon Lucas Boatwright; Ignacio Moreno; Melissa R. Jordan; Yani Chen; Federica Brandizzi; Xinnian Dong; Ariel Orellana; Karolina M. Pajerowska-Mukhtar

Endoplasmic reticulum (ER)-mediated protein secretion and quality control have been shown to play an important role in immune responses in both animals and plants. In mammals, the ER membrane-located IRE1 kinase/endoribonuclease, a key regulator of unfolded protein response (UPR), is required for plasma cell development to accommodate massive secretion of immunoglobulins. Plant cells can secrete the so-called pathogenesis-related (PR) proteins with antimicrobial activities upon pathogen challenge. However, whether IRE1 plays any role in plant immunity is not known. Arabidopsis thaliana has two copies of IRE1, IRE1a and IRE1b. Here, we show that both IRE1a and IRE1b are transcriptionally induced during chemically-induced ER stress, bacterial pathogen infection and treatment with the immune signal salicylic acid (SA). However, we found that IRE1a plays a predominant role in the secretion of PR proteins upon SA treatment. Consequently, the ire1a mutant plants show enhanced susceptibility to a bacterial pathogen and are deficient in establishing systemic acquired resistance (SAR), whereas ire1b is unaffected in these responses. We further demonstrate that the immune deficiency in ire1a is due to a defect in SA- and pathogen-triggered, IRE1-mediated cytoplasmic splicing of the bZIP60 mRNA, which encodes a transcription factor involved in the expression of UPR-responsive genes. Consistently, IRE1a is preferentially required for bZIP60 splicing upon pathogen infection, while IRE1b plays a major role in bZIP60 processing upon Tunicamycin (Tm)-induced stress. We also show that SA-dependent induction of UPR-responsive genes is altered in the bzip60 mutant resulting in a moderate susceptibility to a bacterial pathogen. These results indicate that the IRE1/bZIP60 branch of UPR is a part of the plant response to pathogens for which the two Arabidopsis IRE1 isoforms play only partially overlapping roles and that IRE1 has both bZIP60-dependent and bZIP60-independent functions in plant immunity.


Trends in Plant Science | 2013

Tell me more: roles of NPRs in plant immunity

Karolina M. Pajerowska-Mukhtar; David K. Emerine; M. Shahid Mukhtar

Plants and animals maintain evolutionarily conserved innate immune systems that give rise to durable resistances. Systemic acquired resistance (SAR) confers plant-wide immunity towards a broad spectrum of pathogens. Numerous studies have revealed that NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR) is a key regulator of SAR. Here, we review the mechanisms of NPR1 action in concert with its paralogues NPR3 and NPR4 and other SAR players. We provide insights into the mechanisms of salicylic acid (SA) perception. We discuss the binding of NPR3 and NPR4 with SA that modulates NPR1 coactivator capacity, leading to diverse immune outputs. Finally, we highlight the function of NPR1 as a bona fide SA receptor and propose a possible model of SA perception in planta.


Plant Journal | 2008

The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by Ralstonia solanacearum

M. Shahid Mukhtar; Laurent Deslandes; Marie-Christine Auriac; Yves Marco; Imre E. Somssich

WRKY transcription factors play a key role in modulating the plant defense transcriptome. Here we show that the Arabidopsis mutant wrky27-1, which lacks a functional WRKY27 transcription factor, showed delayed symptom development in response to the bacterial wilt pathogen Ralstonia solanacearum. Additionally, wrky27-1 plants did not express PR marker genes upon infection, as also observed in resistant Nd-1 plants. Spatial expression of WRKY27 correlated well with the route of bacterial infection and propagation in planta. Complementation experiments restored both the early wilting phenotype of wild-type Col-1 plants and activation of PR genes, not only when the WRKY27 cDNA is expressed under the control of the native promoter, but also when the SUC2 promoter was used, suggesting that WRKY27 exerts its function in phloem companion cells. Expression studies identified genes involved in nitrogen metabolism and nitric oxide (NO) generation as potential targets of negative regulation by WRKY27. Our results show that WRKY27 negatively influences symptom development of a vascular pathogen, possibly by affecting signaling or trafficking between the phloem and the xylem.


Cell | 2009

NPR1 in Plant Defense: It's Not over 'til It's Turned over

M. Shahid Mukhtar; Marc T. Nishimura; Jeff Dangl

NPR1 is a key transcriptional coregulator in plant defense responses. In this issue, Spoel et al. (2009) demonstrate that proteasome-mediated degradation of NPR1 in the nucleus promotes efficient expression of defense response genes following infection and prevents spurious activation of defensive responses in the absence of infection.


Planta | 2008

Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis

Karolina M. Pajerowska-Mukhtar; M. Shahid Mukhtar; Nicolas Guex; Vincentius A. Halim; Sabine Rosahl; Imre E. Somssich; Christiane Gebhardt

Natural variation of plant pathogen resistance is often quantitative. This type of resistance can be genetically dissected in quantitative resistance loci (QRL). To unravel the molecular basis of QRL in potato (Solanum tuberosum), we employed the model plant Arabidopsis thaliana for functional analysis of natural variants of potato allene oxide synthase 2 (StAOS2). StAOS2 is a candidate gene for QRL on potato chromosome XI against the oömycete Phytophthora infestans causing late blight, and the bacterium Erwinia carotovora ssp. atroseptica causing stem black leg and tuber soft rot, both devastating diseases in potato cultivation. StAOS2 encodes a cytochrome P450 enzyme that is essential for biosynthesis of the defense signaling molecule jasmonic acid. Allele non-specific dsRNAi-mediated silencing of StAOS2 in potato drastically reduced jasmonic acid production and compromised quantitative late blight resistance. Five natural StAOS2 alleles were expressed in the null Arabidopsis aos mutant under control of the Arabidopsis AOS promoter and tested for differential complementation phenotypes. The aos mutant phenotypes evaluated were lack of jasmonates, male sterility and susceptibility to Erwinia carotovora ssp. carotovora. StAOS2 alleles that were associated with increased disease resistance in potato complemented all aos mutant phenotypes better than StAOS2 alleles associated with increased susceptibility. First structure models of ‘quantitative resistant’ versus ‘quantitative susceptible’ StAOS2 alleles suggested potential mechanisms for their differential activity. Our results demonstrate how a candidate gene approach in combination with using the homologous Arabidopsis mutant as functional reporter can help to dissect the molecular basis of complex traits in non model crop plants.

Collaboration


Dive into the M. Shahid Mukhtar's collaboration.

Top Co-Authors

Avatar

Karolina M. Pajerowska-Mukhtar

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Timothy C Howton

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Yali Sun

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Jeffery L. Dangl

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Marc T. Nishimura

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Bharat Mishra

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Jessica A. Lopez

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Joseph R. Ecker

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natascha Weinberger

Austrian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge