Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Stephan is active.

Publication


Featured researches published by M. Stephan.


arXiv: Instrumentation and Methods for Astrophysics | 2016

The first GCT camera for the cherenkov telescope array

A. De Franco; R. White; D. Allan; T. Armstrong; Terry Ashton; A. Balzer; D. Berge; R. Bose; Anthony M. Brown; J. H. Buckley; P. M. Chadwick; P. Cooke; G. Otter; M. K. Daniel; S. Funk; T. Greenshaw; J. A. Hinton; M. Kraus; J. Lapington; P. Molyneux; P. Moore; S. J. Nolan; A. Okumura; D. Ross; C. B. Rulten; Jürgen Schmoll; H. Schoorlemmer; M. Stephan; P. Sutcliffe; Hiroyasu Tajima

The Gamma Cherenkov Telescope (GCT) is proposed to be part of the Small Size Telescope (SST) array of the Cherenkov Telescope Array (CTA). The GCT dual-mirror optical design allows the use of a compact camera of diameter roughly 0.4 m. The curved focal plane is equipped with 2048 pixels of ~0.2{deg} angular size, resulting in a field of view of ~9{deg}. The GCT camera is designed to record the flashes of Cherenkov light from electromagnetic cascades, which last only a few tens of nanoseconds. Modules based on custom ASICs provide the required fast electronics, facilitating sampling and digitisation as well as first level of triggering. The first GCT camera prototype is currently being commissioned in the UK. On-telescope tests are planned later this year. Here we give a detailed description of the camera prototype and present recent progress with testing and commissioning.


arXiv: Instrumentation and Methods for Astrophysics | 2017

Inauguration and First Light of the GCT-M Prototype for the Cherenkov Telescope Array

J.J. Watson; A. De Franco; A. Abchiche; D. Allan; J. P. Amans; T. Armstrong; A. Balzer; D. Berge; C. Boisson; J. J. Bousquet; A. M. Brown; M. Bryan; Gilles Buchholtz; P. M. Chadwick; H. Costantini; Garret Cotter; M. K. Daniel; F. De Frondat; Jean-Laurent Dournaux; D. J. P. Dumas; J.-P. Ernenwein; G. Fasola; S. Funk; J. Gironnet; J. A. Graham; T. Greenshaw; O. Hervet; N. Hidaka; J. A. Hinton; Jean-Michel Huet

The Gamma-ray Cherenkov Telescope (GCT) is a candidate for the Small Size Telescopes (SSTs) of the Cherenkov Telescope Array (CTA). Its purpose is to extend the sensitivity of CTA to gamma-ray energies reaching 300 TeV. Its dual-mirror optical design and curved focal plane enables the use of a compact camera of 0.4u2005m diameter, while achieving a field of view of above 8 degrees. Through the use of the digitising TARGET ASICs, the Cherenkov flash is sampled once per nanosecond contin-uously and then digitised when triggering conditions are met within the analogue outputs of the photosensors. Entire waveforms (typically covering 96u2005ns) for all 2048 pixels are then stored for analysis, allowing for a broad spectrum of investigations to be performed on the data. Two prototypes of the GCT camera are under development, with differing photosensors: Multi-Anode Photomultipliers (MAPMs) and Silicon Photomultipliers (SiPMs). During November 2015, the GCT MAPM (GCT-M) prototype camera was integrated onto the GCT stru...


arXiv: Instrumentation and Methods for Astrophysics | 2017

The Gamma-ray Cherenkov Telescope for the Cherenkov Telescope Array

L. Tibaldo; A. Abchiche; D. Allan; J. P. Amans; T. Armstrong; A. Balzer; D. Berge; C. Boisson; J. J. Bousquet; A. M. Brown; M. Bryan; Gilles Buchholtz; P. M. Chadwick; H. Costantini; Garret Cotter; M. K. Daniel; A. De Franco; F. De Frondat; Jean-Laurent Dournaux; D. J. P. Dumas; J.-P. Ernenwein; G. Fasola; S. Funk; J. Gironnet; J. A. Graham; T. Greenshaw; O. Hervet; N. Hidaka; J. A. Hinton; Jean-Michel Huet

The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine telescopes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view ≳ 8° and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cherenkov ima...


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2018

Characterisation and testing of CHEC-M—A camera prototype for the small-sized telescopes of the Cherenkov telescope array.

J. Zorn; R. White; J.J. Watson; T.P. Armstrong; A. Balzer; M. Barcelo; D. Berge; R. Bose; A. M. Brown; M. Bryan; P. M. Chadwick; Paul J. Clark; H. Costantini; Garret Cotter; L. Dangeon; M. K. Daniel; A. De Franco; P. Deiml; G. Fasola; S. Funk; M. Gebyehu; J. Gironnet; J. A. Graham; T. Greenshaw; J. A. Hinton; M. Kraus; J. Lapington; P. Laporte; S. Leach; O. Le Blanc

Abstract The Compact High Energy Camera (CHEC) is a camera design for the Small-Sized Telescopes (SSTs; 4 m diameter mirror) of the Cherenkov Telescope Array (CTA). The SSTs are focused on very-high-energy γ -ray detection via atmospheric Cherenkov light detection over a very large area. This implies many individual units and hence cost-effective implementation, as well as shower detection at large impact distance, and hence large field of view (FoV), and efficient image capture in the presence of large time gradients in the shower image detected by the camera. CHEC relies on dual-mirror optics to reduce the plate-scale and make use of 6xa0 × xa06xa0mm 2 pixels, leading to a low-cost ( ∼ 150xa0k€), compact (0.5xa0mxa0 × xa00.5xa0m), and light ( ∼ 45xa0kg) camera with 2048 pixels providing a camera FoV of ∼ 9 degrees. The CHEC electronics are based on custom TARGET (TeV array readout with GSa/s sampling and event trigger) application-specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs) sampling incoming signals at a gigasample per second, with flexible camera-level triggering within a single backplane FPGA. CHEC is designed to observe in the γ -ray energy range of 1–300xa0TeV, and at impact distances up to ∼ 500xa0m. To accommodate this and provide full flexibility for later data analysis, full waveforms with 96 samples for all 2048 pixels can be read out at rates up to ∼ 900xa0Hz. The first prototype, CHEC-M, based on multi-anode photomultipliers (MAPMs) as photosensors, was commissioned and characterised in the laboratory and during two measurement campaigns on a telescope structure at the Paris Observatory in Meudon. In this paper, the results and conclusions from the laboratory and on-site testing of CHEC-M are presented. They have provided essential input on the system design and on operational and data analysis procedures for a camera of this type. A second full-camera prototype based on Silicon photomultipliers (SiPMs), addressing the drawbacks of CHEC-M identified during the first prototype phase, has already been built and is currently being commissioned and tested in the laboratory.


Ground-based and Airborne Telescopes VII | 2018

Final characterisation and design of the Gamma-ray Cherenkov Telescope (GCT) for the Cherenkov telescope array

Oriane Le Blanc; Gilles Fasola; Jean-Michel Huet; Richard White; A. Dmytriiev; H. Sol; Andreas Zech; Abdelkader Abchiche; Jean-Philippe Amans; Thomas Armstrong; Miquel Barcelo; D. Berge; Anthony M. Brown; Gilles Buchholtz; P. M. Chadwick; Paul Clark; Garret Cotter; Lucie Dangeon; Fatima De Frondat; Peter Deiml; Jean-Laurent Dournaux; Connor Duffy; S. Einecke; S. Flis; Stefan Funk; Gianluca Giavitto; Johann Gironnet; Jamie Graham; Tim Greenshaw; J. A. Hinton

The Gamma-ray Cherenkov Telescope (GCT) is one of the telescopes proposed for the Small Sized Telescope (SST) section of CTA. Based on a dual-mirror Schwarzschild-Couder design, which allows for more compact telescopes and cameras than the usual single-mirror designs, it will be equipped with a Compact High-Energy Camera (CHEC) based on silicon photomultipliers (SiPM). In 2015, the GCT prototype was the first dual-mirror telescope constructed in the prospect of CTA to record Cherenkov light on the night sky. Further tests and observations have been performed since then. This report describes the current status of the GCT, the results of tests performed to demonstrate its compliance with CTA requirements, and the optimisation of the design for mass production. The GCT collaboration, including teams from Australia, France, Germany, Japan, the Netherlands and the United Kingdom, plans to install the first telescopes on site in Chile for 2019-2020 as part of the CTA pre-production phase.


Proceedings of SPIE | 2016

The Gamma-ray Cherenkov Telescope, an end-to end Schwarzschild-Couder telescope prototype proposed for the Cherenkov Telescope Array

J. L. Dournaux; A. Abchiche; D. Allan; J. P. Amans; T. Armstrong; A. Balzer; D. Berge; C. Boisson; J. J. Bousquet; A. M. Brown; M. Bryan; G. Buchholtz; P. M. Chadwick; H. Costantini; Garret Cotter; L. Dangeon; M. K. Daniel; A. De Franco; F. De Frondat; D. Dumas; J.-P. Ernenwein; G. Fasola; S. Funk; J. Gironnet; J. A. Graham; T. Greenshaw; B. Hameau; O. Hervet; N. Hidaka; J. A. Hinton

The GCT (Gamma-ray Cherenkov Telescope) is a dual-mirror prototype of Small-Sized-Telescopes proposed for the Cherenkov Telescope Array (CTA) and made by an Australian-Dutch-French-German-Indian-Japanese-UK-US consortium. The integration of this end-to-end telescope was achieved in 2015. On-site tests and measurements of the first Cherenkov images on the night sky began on November 2015. This contribution describes the telescope and plans for the pre-production and a large scale production within CTA.


arXiv: Instrumentation and Methods for Astrophysics | 2015

Status of the Silicon Photomultiplier Telescope FAMOUS for the Fluorescence Detection of UHECRs

T. Niggemann; P. Assis; Pedro Brogueira; A. Bueno; Hans Michael Eichler; T. Hebbeker; M. Lauscher; L. Middendorf; S. Navas; C. Peters; Angel Ruiz; J. Schumacher; M. Stephan


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2016

The GCT camera for the Cherenkov Telescope Array

Anthony M. Brown; A. Abchiche; D. Allan; J. P. Amans; T. Armstrong; A. Balzer; D. Berge; C. Boisson; J. J. Bousquet; M. Bryan; G. Buchholtz; P. M. Chadwick; H. Costantini; Garret Cotter; M. K. Daniel; A. De Franco; F. De Frondat; J. L. Dournaux; D. Dumas; G. Fasola; S. Funk; J. Gironnet; J. A. Graham; T. Greenshaw; O. Hervet; N. Hidaka; J. A. Hinton; J. M. Huet; I. Jegouzo; T. Jogler


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2017

Operating performance of the gamma-ray Cherenkov telescope: An end-to-end Schwarzschild–Couder telescope prototype for the Cherenkov Telescope Array

J.-L. Dournaux; A. De Franco; P. Laporte; Richard White; T. Greenshaw; H. Sol; A. Abchiche; D. Allan; J. P. Amans; T. Armstrong; A. Balzer; D. Berge; C. Boisson; J. J. Bousquet; A. M. Brown; M. Bryan; G. Buchholtz; P. M. Chadwick; H. Costantini; Garret Cotter; M. K. Daniel; F. De Frondat; D. Dumas; J.-P. Ernenwein; G. Fasola; S. Funk; J. Gaudemard; J. A. Graham; J. Gironnet; O. Hervet


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2017

Evaluation of silicon photomultipliers for dual-mirror Small-Sized Telescopes of Cherenkov Telescope Array

A. Asano; D. Berge; G. Bonanno; M. Bryan; B. Gebhardt; A. Grillo; N. Hidaka; P. Kachru; J. Lapington; S. Leach; Yuji Nakamura; A. Okumura; G. Romeo; D. Ross; M. Stephan; Hiroyasu Tajima; M.C. Timpanaro; R. White; N. Yamane; A. Zink

Collaboration


Dive into the M. Stephan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Balzer

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

D. Berge

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

M. Bryan

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. K. Daniel

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar

T. Greenshaw

University of Liverpool

View shared research outputs
Researchain Logo
Decentralizing Knowledge