Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Suarez is active.

Publication


Featured researches published by M. Suarez.


Astronomy and Astrophysics | 2016

First light of the VLT planet finder SPHERE III. New spectrophotometry and astrometry of the HR 8799 exoplanetary system

A. Zurlo; A. Vigan; R. Galicher; A.-L. Maire; D. Mesa; R. Gratton; G. Chauvin; M. Kasper; Claire Moutou; M. Bonnefoy; S. Desidera; Lyu Abe; Daniel Apai; Andrea Baruffolo; Pierre Baudoz; J. Baudrand; J.-L. Beuzit; P. Blancard; A. Boccaletti; F. Cantalloube; M. Carle; E. Cascone; Julien Charton; R. U. Claudi; A. Costille; V. De Caprio; Kjetil Dohlen; C. Dominik; D. Fantinel; Philippe Feautrier

Context. The planetary system discovered around the young A-type HR 8799 provides a unique laboratory to: a) test planet formation theories; b) probe the diversity of system architectures at these separations, and c) perform comparative (exo)planetology. Aims. We present and exploit new near-infrared images and integral-field spectra of the four gas giants surrounding HR 8799 obtained with SPHERE, the new planet finder instrument at the Very Large Telescope, during the commissioning and science verification phase of the instrument (July–December 2014). With these new data, we contribute to completing the spectral energy distribution (SED) of these bodies in the 1.0–2.5 μm range. We also provide new astrometric data, in particular for planet e, to further constrain the orbits. Methods. We used the infrared dual-band imager and spectrograph (IRDIS) subsystem to obtain pupil-stabilized, dual-band H2H3 (1.593 μm, 1.667 μm), K1K2 (2.110 μm, 2.251 μm), and broadband J (1.245 μm) images of the four planets. IRDIS was operated in parallel with the integral field spectrograph (IFS) of SPHERE to collect low-resolution (R ~ 30), near-infrared (0.94–1.64 μm) spectra of the two innermost planets HR 8799 d and e. The data were reduced with dedicated algorithms, such as the Karhunen-Loeve image projection (KLIP), to reveal the planets. We used the so-called negative planets injection technique to extract their photometry, spectra, and measure their positions. We illustrate the astrometric performance of SPHERE through sample orbital fits compatible with SPHERE and literature data. Results. We demonstrated the ability of SPHERE to detect and characterize planets in this kind of systems, providing spectra and photometry of its components. The spectra improve upon the signal-to-noise ratio of previously obtained data and increase the spectral coverage down to the Y band. In addition, we provide the first detection of planet e in the J band. Astrometric positions for planets HR 8799 bcde are reported for the epochs of July, August, and December 2014. We measured the photometric values in J, H2H3, K1K2 bands for the four planets with a mean accuracy of 0.13 mag. We found upper limit constraints on the mass of a possible planet f of 3–7 MJup . Our new measurements are more consistent with the two inner planets d and e being in a 2d:1e or 3d:2e resonance. The spectra of HR 8799 d and e are well matched by those of L6-8 field dwarfs. However, the SEDs of these objects are redder than field L dwarfs longward of 1.6 μm.


Astronomy and Astrophysics | 2016

First light of the VLT planet finder SPHERE I. Detection and characterization of the substellar companion GJ 758 B

A. Vigan; M. Bonnefoy; C. Ginski; H. Beust; R. Galicher; Markus Janson; J.-L. Baudino; Esther Buenzli; J. Hagelberg; Valentina D'Orazi; S. Desidera; A.-L. Maire; R. Gratton; Jean-François Sauvage; G. Chauvin; C. Thalmann; L. Malo; G. Salter; A. Zurlo; J. Antichi; Andrea Baruffolo; Pierre Baudoz; P. Blanchard; A. Boccaletti; J.-L. Beuzit; M. Carle; R. U. Claudi; A. Costille; A. Delboulbé; Kjetil Dohlen

GJ 758 B is a brown dwarf companion to a nearby (15.76%) solar-type, metal-rich (M/H = +0.2 dex) main-sequence star (G9V) that was discovered with Subaru/HiCIAO in 2009. From previous studies, it has drawn attention as being the coldest (similar to 600 K) companion ever directly imaged around a neighboring star. We present new high-contrast data obtained during the commissioning of the SPHERE instrument at the Very Large Telescope (VLT). The data was obtained in Y-, J-, H-, and K-s-bands with the dual-band imaging (DBI) mode of IRDIS, thus providing a broad coverage of the full near-infrared (near-IR) range at higher contrast and better spectral sampling than previously reported. In this new set of high-quality data, we report the re-detection of the companion, as well as the first detection of a new candidate closer-in to the star. We use the new eight photometric points for an extended comparison of GJ 758 B with empirical objects and four families of atmospheric models. From comparison to empirical object, we estimate a T8 spectral type, but none of the comparison objects can accurately represent the observed near-IR fluxes of GJ 758 B. From comparison to atmospheric models, we attribute a T-eff = 600 +/- 100 K, but we find that no atmospheric model can adequately fit all the fluxes of GJ 758 B. The lack of exploration of metal enrichment in model grids appears as a major limitation that prevents an accurate estimation of the companion physical parameters. The photometry of the new candidate companion is broadly consistent with L-type objects, but a second epoch with improved photometry is necessary to clarify its status. The new astrometry of GJ 758 B shows a significant proper motion since the last epoch. We use this result to improve the determination of the orbital characteristics using two fitting approaches: Least-Squares Monte Carlo and Markov chain Monte Carlo. We confirm the high-eccentricity of the orbit (peak at 0.5), and find a most likely semi-major axis of 46.05 AU. We also use our imaging data, as well as archival radial velocity data, to reject the possibility that this is a false positive effect created by an unseen, closer-in, companion. Finally, we analyze the sensitivity of our data to additional closer-in companions and reject the possibility of other massive brown dwarf companions down to 4-5 AU.


Proceedings of SPIE | 2014

Final performance and lesson-learned of SAXO, the VLT-SPHERE extreme AO: from early design to on-sky results

Thierry Fusco; J.-F. Sauvage; Cyril Petit; A. Costille; Kjetil Dohlen; David Mouillet; Jean-Luc Beuzit; M. Kasper; M. Suarez; Christian Soenke; Enrico Fedrigo; Mark Downing; Pierre Baudoz; A. Sevin; Denis Perret; A. Barrufolo; Bernardo Salasnich; Pascal Puget; F. Feautrier; S. Rochat; T. Moulin; A. Deboulbé; Emmanuel Hugot; A. Vigan; Dimitri Mawet; J. H. Girard; Norbert Hubin

The extreme AO system, SAXO (SPHERE AO for eXoplanet Observation), is the heart of the SPHERE system, feeding the scientific instruments with flat wave front corrected from all the atmospheric turbulence and internal defects. We will present the final performance of SAXO obtained during the instrument AIT in Europe as well as the very first on-sky results. The main requirements and system characteristics will be recalled and the full AO loop performance will be quantified and compared to original specifications. It will be demonstrated that SAXO meets or even exceeds (especially its limit magnitude and its jitter residuals) its challenging requirements (more than 90% of SR in H band and a 3 mas residual jitter). Finally, after 10 years of AO developments, from early design to final on-sky implementations, some critical system aspects as well as some important lesson-learned will be presented in the perspective of the future generation of complex AO systems for VLTs and ELTs.


Proceedings of SPIE | 2014

SPHERE eXtreme AO control scheme: final performance assessment and on sky validation of the first auto-tuned LQG based operational system

Cyril Petit; J.-F. Sauvage; Thierry Fusco; A. Sevin; M. Suarez; A. Costille; A. Vigan; Christian Soenke; Denis Perret; S. Rochat; A. Barrufolo; Bernardo Salasnich; J.-L. Beuzit; Kjetil Dohlen; David Mouillet; Pascal Puget; F. Wildi; M. Kasper; Jean-Marc Conan; Caroline Kulcsár; Henri-François Raynaud

The SPHERE (Spectro-Polarimetry High-contrast Exoplanet Research) instrument is an ESO project aiming at the direct detection of extra-solar planets. SPHERE has been successfully integrated and tested in Europe end 2013 and has been re-integrated at Paranal in Chile early 2014 for a first light at the beginning of May. The heart of the SPHERE instrument is its eXtreme Adaptive Optics (XAO) SAXO (SPHERE AO for eXoplanet Observation) subsystem that provides extremely high correction of turbulence and very accurate stabilization of images for coronagraphic purpose. However, SAXO, as well as the overall instrument, must also provide constant operability overnights, ensuring robustness and autonomy. An original control scheme has been developed to satisfy this challenging dichotomy. It includes in particular both an Optimized Modal Gain Integrator (OMGI) to control the Deformable Mirror (DM) and a Linear Quadratic Gaussian (LQG) control law to manage the tip-tilt (TT) mirror. LQG allows optimal estimation and prediction of turbulent angle of arrival but also of possible vibrations. A specific and unprecedented control scheme has been developed to continuously adapt and optimize LQG control ensuring a constant match to turbulence and vibrations characteristics. SPHERE is thus the first operational system implementing LQG, with automatic adjustment of its models. SAXO has demonstrated performance beyond expectations during tests in Europe, in spite of internal limitations. Very first results have been obtained on sky last May. We thus come back to SAXO control scheme, focusing in particular on the LQG based TT control and the various upgrades that have been made to enhance further the performance ensuring constant operability and robustness. We finally propose performance assessment based on in lab performance and first on sky results and discuss further possible improvements.


Journal of Astronomical Telescopes, Instruments, and Systems | 2016

SAXO: the extreme adaptive optics system of SPHERE (I) system overview and global laboratory performance

Jean-François Sauvage; T. Fusco; Cyril Petit; A. Costille; David Mouillet; Jean-Luc Beuzit; Kjetil Dohlen; Markus Kasper; M. Suarez; Christian Soenke; Andrea Baruffolo; Bernardo Salasnich; S. Rochat; Enrico Fedrigo; Pierre Baudoz; Emmanuel Hugot; A. Sevin; Denis Perret; F. Wildi; Mark Downing; Philippe Feautrier; Pascal Puget; A. Vigan; Jared O'Neal; J. H. Girard; Dimitri Mawet; Hans Martin Schmid; Ronald Roelfsema

Abstract. The direct imaging of exoplanet is a leading field of today’s astronomy. The photons coming from the planet carry precious information on the chemical composition of its atmosphere. The second-generation instrument, Spectro-Polarimetric High contrast Exoplanet Research (SPHERE), dedicated to detection, photometry and spectral characterization of Jovian-like planets, is now in operation on the European very large telescope. This instrument relies on an extreme adaptive optics (XAO) system to compensate for atmospheric turbulence as well as for internal errors with an unprecedented accuracy. We demonstrate the high level of performance reached by the SPHERE XAO system (SAXO) during the assembly integration and test (AIT) period. In order to fully characterize the instrument quality, two AIT periods have been mandatory. In the first phase at Observatoire de Paris, the performance of SAXO itself was assessed. In the second phase at IPAG Grenoble Observatory, the operation of SAXO in interaction with the overall instrument has been optimized. In addition to the first two phases, a final check has been performed after the reintegration of the instrument at Paranal Observatory, in the New Integration Hall before integration at the telescope focus. The final performance aimed by the SPHERE instrument with the help of SAXO is among the highest Strehl ratio pretended for an operational instrument (90% in H band, 43% in V band in a realistic turbulence r0, and wind speed condition), a limit R magnitude for loop closure at 15, and a robustness to high wind speeds. The full-width at half-maximum reached by the instrument is 40 mas for infrared in H band and unprecedented 18.5 mas in V band.


Proceedings of SPIE | 2012

The SPHERE XAO system SAXO: integration, test, and laboratory performance

Cyril Petit; J.-F. Sauvage; A. Sevin; A. Costille; T. Fusco; Pierre Baudoz; J.-L. Beuzit; T. Buey; Julien Charton; Kjetil Dohlen; Philippe Feautrier; Enrico Fedrigo; J.-L. Gach; Norbert Hubin; Emmanuel Hugot; M. Kasper; David Mouillet; Denis Perret; P. Puget; Jean-Christophe Sinquin; Christian Soenke; M. Suarez; F. Wildi

Direct detection and spectral characterization of extra-solar planets is one of the most exciting and challenging areas in modern astronomy due to the very large contrast between the host star and the planet at very small angular separations. SPHERE (Spectro-Polarimetric High-contrast Exoplanet Research in Europe) is a second-generation instrument for the ESO VLT dedicated to this scientific objective. It combines an extreme adaptive optics system, various coronagraphic devices and a suite of focal instruments providing imaging, integral field spectroscopy and polarimetry capabilities in the visible and near-infrared spectral ranges. The extreme Adaptive Optics (AO) system, SAXO, is the heart of the SPHERE system, providing to the scientific instruments a flat wavefront corrected from all the atmospheric turbulence and internal defects. We present an updated analysis of SAXO assembly, integration and performance. This integration has been defined in a two step process. While first step is now over and second one is ongoing, we propose a global overview of integration results. The main requirements and system characteristics are briefly recalled, then each sub system is presented and characterized. Finally the full AO loop first performance is assessed. First results demonstrate that SAXO shall meet its challenging requirements.


Monthly Notices of the Royal Astronomical Society | 2018

Investigation of the inner structures around HD 169142 with VLT/SPHERE

R. Ligi; A. Vigan; R. Gratton; J. de Boer; M. Benisty; A. Boccaletti; Sascha P. Quanz; Michael R. Meyer; C. Ginski; E. Sissa; C. Gry; T. Henning; J.-L. Beuzit; Beth A. Biller; M. Bonnefoy; G. Chauvin; Anthony Cheetham; M. Cudel; P. Delorme; S. Desidera; Markus Feldt; R. Galicher; J. H. Girard; Markus Janson; M. Kasper; T. Kopytova; A.-M. Lagrange; M. Langlois; H. LeCoroller; A. L. Maire

We present observations of the Herbig Ae star HD169142 with VLT/SPHERE instruments InfraRed Dual-band Imager and Spectrograph (IRDIS) (K1K2 and H2H3 bands) and the Integral Field Spectrograph (IFS) (Y , J and H bands). We detect several bright blobs at ∼180 mas separation from the star, and a faint arc-like structure in the IFS data. Our reference differential imaging (RDI) data analysis also finds a bright ring at the same separation. We show, using a simulation based on polarized light data, that these blobs are actually part of the ring at 180 mas. These results demonstrate that the earlier detections of blobs in the H and K S bands at these separations in Biller et al. as potential planet/substellar companions are actually tracing a bright ring with a Keplerian motion. Moreover, we detect in the images an additional bright structure at ∼93 mas separation and position angle of 355 • , at a location very close to previous detections. It appears point-like in the Y J and K bands but is more extended in the H band. We also marginally detect an inner ring in the RDI data at ∼100 mas. Follow-up observations are necessary to confirm the detection and the nature of this source and structure.


Proceedings of SPIE | 2016

Adaptive Optics Facility: control strategy and first on-sky results of the acquisition sequence

Pierre-Yves Madec; Johann Kolb; Sylvain Oberti; Jerome Paufique; P. La Penna; W. Hackenberg; Harald Kuntschner; Javier Argomedo; M. Kiekebusch; R. Donaldson; M. Suarez; Robin Arsenault

The Adaptive Optics Facility is an ESO project aiming at converting Yepun, one of the four 8m telescopes in Paranal, into an adaptive telescope. This is done by replacing the current conventional secondary mirror of Yepun by a Deformable Secondary Mirror (DSM) and attaching four Laser Guide Star (LGS) Units to its centerpiece. In the meantime, two Adaptive Optics (AO) modules have been developed incorporating each four LGS WaveFront Sensors (WFS) and one tip-tilt sensor used to control the DSM at 1 kHz frame rate. The four LGS Units and one AO module (GRAAL) have already been assembled on Yepun. Besides the technological challenge itself, one critical area of AOF is the AO control strategy and its link with the telescope control, including Active Optics used to shape M1. Another challenge is the request to minimize the overhead due to AOF during the acquisition phase of the observation. This paper presents the control strategy of the AOF. The current control of the telescope is first recalled, and then the way the AO control makes the link with the Active Optics is detailed. Lab results are used to illustrate the expected performance. Finally, the overall AOF acquisition sequence is presented as well as first results obtained on sky with GRAAL.


Proceedings of SPIE | 2016

SAXO, the SPHERE extreme AO system: on-sky final performance and future improvements

T. Fusco; J.-F. Sauvage; David Mouillet; A. Costille; Cyril Petit; Jean-Luc Beuzit; Kjetil Dohlen; J. Milli; J. H. Girard; M. Kasper; A. Vigan; M. Suarez; Christian Soenke; Mark Downing; Mamadou N'Diaye; Pierre Baudoz; A. Sevin; Andrea Baruffolo; H. M. Schmid; Bernardo Salasnich; Emmanuel Hugot; Norbert Hubin

The SPHERE (Spectro-Polarimetric High-contrast Exoplanet Research) instrument aims at detecting extremely faint sources (giant extrasolar planets) in the vicinity of bright stars1. Such a challenging goal requires the use of a very-high-order performance Adaptive Optics [AO] system feeding the scientific instruments with a quasi-perfect flat wave front corrected from all the atmospheric turbulence and internal defects. This AO system, called SAXO (Sphere Ao for eXoplanet Observation) is the heart of the instrument, a heart beating 1200 time per second and providing unprecedented image quality for a large ground based telescope at optical/near infrared wavelength. We will present the latest results obtained on-sky, demonstrating its exceptional performance (in terms of correction quality, stability and robustness) and tremendous potentiality for high contrast imaging and more specifically for exoplanet discovery.


Astronomy and Astrophysics | 2018

First scattered light detection of a nearly edge-on transition disk around the T Tauri star RY Lupi

M. Langlois; A. Pohl; A.-M. Lagrange; A.-L. Maire; D. Mesa; A. Boccaletti; R. Gratton; L. Denneulin; Hubert Klahr; A. Vigan; M. Benisty; C. Dominik; M. Bonnefoy; Francois Menard; H. Avenhaus; A. Cheetham; R. van Boekel; J. de Boer; G. Chauvin; S. Desidera; M. Feldt; R. Galicher; C. Ginski; J. H. Girard; T. Henning; Markus Janson; T. Kopytova; Q. Kral; R. Ligi; S. Messina

Context. Transition disks are considered sites of ongoing planet formation, and their dust and gas distributions could be signposts of embedded planets. The transition disk around the T Tauri star RY Lup has an inner dust cavity and displays a strong silicate emission feature. Aims. Using high-resolution imaging we study the disk geometry, including non-axisymmetric features, and its surface dust grain, to gain a better understanding of the disk evolutionary process. Moreover, we search for companion candidates, possibly connected to the disk. Methods. We obtained high-contrast and high angular resolution data in the near-infrared with the VLT/SPHERE extreme adaptive optics instrument whose goal is to study the planet formation by detecting and characterizing these planets and their formation environments through direct imaging. We performed polarimetric imaging of the RY Lup disk with IRDIS (at 1.6 μm), and obtained intensity images with the IRDIS dual-band imaging camera simultaneously with the IFS spectro-imager (0.9–1.3 μm). Results. We resolved for the first time the scattered light from the nearly edge-on circumstellar disk around RY Lup, at projected separations in the 100 au range. The shape of the disk and its sharp features are clearly detectable at wavelengths ranging from 0.9 to 1.6 μm. We show that the observed morphology can be interpreted as spiral arms in the disk. This interpretation is supported by in-depth numerical simulations. We also demonstrate that these features can be produced by one planet interacting with the disk. We also detect several point sources which are classified as probable background objects.

Collaboration


Dive into the M. Suarez's collaboration.

Top Co-Authors

Avatar

A. Costille

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

David Mouillet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.-L. Beuzit

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

M. Kasper

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Vigan

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

J. H. Girard

European Southern Observatory

View shared research outputs
Researchain Logo
Decentralizing Knowledge