Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Suffert is active.

Publication


Featured researches published by M. Suffert.


The Astrophysical Journal | 2000

The cosmic-ray electron and positron spectra measured at 1 Au during solar minimum activity

M. Boezio; Per Carlson; Tom Francke; N. Weber; M. Suffert; M. Hof; W. Menn; Michael Simon; S. A. Stephens; R. Bellotti; F. Cafagna; M. Castellano; M. Circella; C. De Marzo; N. Finetti; P. Papini; S. Piccardi; P. Spillantini; Mario V. Ricci; M. Casolino; M. P. De Pascale; A. Morselli; Piergiorgio Picozza; Roberta Sparvoli; G. Barbiellini; Ulisse Bravar; Paolo Schiavon; Andrea Vacchi; N. Zampa; C. Grimani

We report on a new measurement of the cosmic-ray electron and positron spectra. The data were collected by the balloon-borne experiment CAPRICE94, which was —own from Lynn Lake, Canada, on 1994 August 8¨9 at an altitude corresponding to 3.9 g cm~2 of average residual atmosphere. The experi- ment used the NMSU-WIZARD/CAPRICE94 balloon-borne magnet spectrometer equipped with a solid radiator Ring Imaging Cerenkov (RICH) detector, a time-of-—ight system, a tracking device consisting of drift chambers and multiwire proportional chambers, and a silicon-tungsten calorimeter. This was the —rst time a RICH detector was used together with an imaging calorimeter in a balloon-borne experi- ment. A total of 3211 electrons, with a rigidity at the spectrometer between 0.3 and 30 GV, and 734 positrons, between 0.3 and 10 GV, were identi—ed with small backgrounds from other particles. The absolute energy spectra were determined in the energy region at the top of the atmosphere between 0.46 and 43.6 GeV for electrons and between 0.46 and 14.6 GeV for positrons. We found that the observed positron spectrum and the positron fraction are consistent with a pure secondary origin. A comparison of the theoretically predicted interstellar spectrum of electrons shows that the injection spectrum of primary electrons is steeper than that of the nucleonic components of cosmic rays. Furthermore, the observed electron and positron spectra can be reproduced from the interstellar spectra by a spherically symmetric model for solar modulation; hence, the modulation is independent of the sign of the particle charge. Subject headings: balloonscosmic rayselementary particlesSun: activity


The Astrophysical Journal | 1999

THE COSMIC-RAY PROTON AND HELIUM SPECTRA BETWEEN 0.4 AND 200 GV

M. Boezio; Per Carlson; Tom Francke; N. Weber; M. Suffert; M. Hof; W. Menn; M. Simon; S. A. Stephens; R. Bellotti; F. Cafagna; M. Castellano; M. Circella; C. De Marzo; N. Finetti; P. Papini; S. Piccardi; P. Spillantini; Mario V. Ricci; M. Casolino; M. P. De Pascale; A. Morselli; Piergiorgio Picozza; Roberta Sparvoli; G. Barbiellini; Ulisse Bravar; Paolo Schiavon; Andrea Vacchi; N. Zampa; J. W. Mitchell

We report on the hydrogen nuclei (protons and deuterons) spectrum from 0.15 to 200 GeV and on the helium nuclei spectrum over the energy range from 0.2 to 100 GeV nucleon~1 at the top of the atmo- sphere measured by the balloon-borne experiment Cosmic Antiparticle Ring-Imaging Cerenkov Experi- ment (CAPRICE), which was —own from Lynn Lake, Manitoba, Canada, on 1994 August 8¨9. We also report on the proton spectrum over the energy range from 0.15 to 4.2 GeV. The experiment used the NMSU-WiZard/CAPRICE balloon-borne magnet spectrometer equipped with a solid radiator Ring- Imaging Cerenkov (RICH) detector and a silicon-tungsten calorimeter for particle identi—cation. This was the —rst time a RICH was used together with an imaging calorimeter in a balloon-borne experiment. These detectors allowed for clear particle identi—cation, as well as excellent control of the detector effi- ciencies. The data were collected during 18 hr at a residual mean atmospheric depth of 3.9 g cm~2. With this apparatus 516,463 hydrogen and 32,457 helium nuclei were identi—ed in the rigidity range 0.4 to 200 GV and 1.2 to 200 GV, respectively. The observed energy spectrum at the top of the atmosphere can be represented by (1.1 ^ 0.1) ) 104 E~2.73B0.06 particles (m2 GeV sr s)~1 for hydrogen (E in GeV) between 20 and 200 GeV and (4.3 ^ 0.9) ) 102 E~2.65B0.07 particles (m2 GeV nucleon~1 sr s)~1 for helium nuclei (E in GeV nucleon~1) between 10 and 100 GeV nucleon~1. These spectra are in good agreement with other recent measurements above 10 GeV. The observed spectra —atten below 10 GeV due to solar modulation and are consistent with earlier measurements when solar modulation is taken into account. Between 5 and 200 GV the hydrogen to helium ratio as a function of rigidity was found to be approx- imately constant at 6.1 ^ 0.1. Subject headings: cosmic rayselementary particles


The Astrophysical Journal | 2001

The Cosmic-Ray Antiproton Flux between 3 and 49 GeV

M. Boezio; V. Bonvicini; P. Schiavon; A. Vacchi; N. Zampa; D. Bergström; P. Carlson; Tom Francke; S. Grinstein; M. Suffert; M. Hof; J. Kremer; W. Menn; M. Simon; S. A. Stephens; M. Ambriola; R. Bellotti; F. Cafagna; F. Ciacio; M. Circella; C. De Marzo; N. Finetti; P. Papini; S. Piccardi; P. Spillantini; E. Vannuccini; S. Bartalucci; M. Ricci; M. Casolino; M. P. De Pascale

We report on a new measurement of the cosmic ray antiproton spectrum. The data were collected by the balloon-borne experiment CAPRICE98 which was flown on 28-29 May 1998 from Fort Sumner, New Mexico, USA. The experiment used the NMSU-WIZARD/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas Ring Imaging Cherenkov (RICH) detector, a time-of-flight system, a tracking device consisting of drift chambers and a superconducting magnet and a silicon-tungsten calorimeter. The RICH detector was the first ever flown capable of mass-resolving charge-one particles at energies above 5 GeV. A total of 31 antiprotons with rigidities between 4 and 50 GV at the spectrometer were identified with small backgrounds from other particles. The absolute antiproton energy spectrum was determined in the kinetic energy region at the top of the atmosphere between 3.2 and 49.1 GeV. We found that the observed antiproton spectrum and the antiproton-to-proton ratio are consistent with a pure secondary origin. However, a primary component may not be excluded.We report on a new measurement of the cosmic ray antiproton spectrum. The data were collected by the balloon-borne experiment CAPRICE98, which was —own on 1998 May 28¨29 from Fort Sumner, New Mexico. The experiment used the NMSU-WiZard/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas Ring Imaging Cherenkov (RICH) detector, a time-of-—ight system, a tracking device consisting of drift chambers and a superconducting magnet, and a silicon-tungsten calorimeter. The RICH detector was the —rst ever —own capable of mass-resolving charge-one particles at energies above 5 GeV. A total of 31 antiprotons with rigidities between 4 and 50 GV at the spectrometer were identi—ed with small backgrounds from other particles. The absolute antiproton energy spectrum was determined in the kinetic energy region at the top of the atmosphere between 3.2 and 49.1 GeV. We found that the observed antiproton spectrum and the antiproton-to-proton ratio are consistent with a pure secondary origin. However, a primary component may not be excluded.


The Astrophysical Journal | 1997

The Cosmic-Ray Antiproton Flux between 0.62 and 3.19 GeV Measured Near Solar Minimum Activity

M. Boezio; Per Carlson; Tom Francke; N. Weber; M. Suffert; M. Hof; W. Menn; Michael Simon; S. A. Stephens; R. Bellotti; F. Cafagna; M. Castellano; M. Circella; G. de Cataldo; C. De Marzo; N. Giglietto; P. Spinelli; M. Bocciolini; P. Papini; A. Perego; S. Piccardi; P. Spillantini; G. Basini; Mario V. Ricci; A. Codino; N. Finetti; C. Grimani; M. Candusso; M. Casolino; M. P. De Pascale

We report on the absolute antiproton Nux and the antiproton to proton ratio in the energy range 0.62E3.19 GeV at the top of the atmosphere, measured by the balloon-borne experiment CAPRICE Nown from Lynn Lake, Manitoba, Canada, on 1994 August 8E9. The experiment used the New Mexico State University WiZard/CAPRICE balloon-borne magnet spectrometer equipped with a solid radiator Ring Imaging Cherenkov (RICH) detector and a silicon-tungsten calorimeter for particle identi-cation. This is the -rst time a RICH is used together with an imaging calorimeter in a balloon experiment, and it allows antiprotons to be clearly identi-ed over the rigidity range 1.2E4 GV. Nine antiprotons were identi-ed in the energy range 0.62E3.19 GeV at the top of the atmosphere. The data were collected over 18 hr at a mean residual atmosphere of 3.9 g cm~2. The absolute antiproton Nux is consistent with a pure secondary production of antiprotons during the propagation of cosmic rays in the Galaxy. Subject headings: balloons E cosmic rays E elementary particles E Sun: activity


Astroparticle Physics | 2003

The cosmic-ray proton and helium spectra measured with the CAPRICE98 balloon experiment

M. Boezio; V. Bonvicini; P. Schiavon; A. Vacchi; N. Zampa; D. Bergström; P. Carlson; T. Francke; P. Hansen; E. Mocchiutti; M. Suffert; M. Hof; J. Kremer; W. Menn; M. Simon; M. Ambriola; R. Bellotti; F. Cafagna; F. Ciacio; M. Circella; C. De Marzo; N. Finetti; P. Papini; S. Piccardi; P. Spillantini; E. Vannuccini; S. Bartalucci; M. Ricci; M. Casolino; M. P. De Pascale

A new measurement of the primary cosmic-ray proton and helium fluxes from 3 to 350 GeV was carried out by the balloon-borne CAPRICE experiment in 1998. This experimental setup combines different detector techniques and has excellent particle discrimination capabilities allowing clear particle identification. Our experiment has the capability to determine accurately detector selection efficiencies and systematic errors associated with them. Furthermore, it can check for the first time the energy determined by the magnet spectrometer by using the Cherenkov angle measured by the RICH detector well above 20 GeV n � 1 . The analysis of the primary proton and helium components is described here and the results are compared with other recent measurements using other magnet spectrometers. The observed energy


Physical Review D | 2000

Measurement of the flux of atmospheric muons with the CAPRICE94 apparatus

M. Boezio; Mario V. Ricci; R. Bellotti; P. Spillantini; M. Hof; Per Carlson; N. Zampa; R. E. Streitmatter; C. De Marzo; J. W. Mitchell; Tom Francke; J.F. Ormes; G. Barbiellini; A. Morselli; S. Piccardi; M. P. De Pascale; R. L. Golden; S.J. Stochaj; Andrea Vacchi; Ulisse Bravar; M. Suffert; N. Weber; Roberta Sparvoli; Paolo Schiavon; F. Cafagna; P. Papini; M. Casolino; W. Menn; Piergiorgio Picozza; S. A. Stephens

A new measurement of the momentum spectra of both positive and negative muons as function of atmospheric depth was made by the balloon-borne experiment CAPRICE94. The data were collected during ground runs in Lynn Lake on the 19-20th of July 1994 and during the balloon flight on the 8-9th of August 1994. We present results that cover the momentum intervals 0.3-40 GeV/c for negative muons and 0.3-2 GeV/c for positive muons, for atmospheric depths from 3.3 to 1000 g/cm**2, respectively. Good agreement is found with previous measurements for high momenta, while at momenta below 1 GeV/c we find latitude dependent geomagnetic effects. These measurements are important cross-checks for the simulations carried out to calculate the atmospheric neutrino fluxes and to understand the observed atmospheric neutrino anomaly.


Advances in Space Research | 2001

Measurements of cosmic-ray electrons and positrons by the Wizard/CAPRICE collaboration

M. Boezio; G. Barbiellini; V. Bonvicini; P. Schiavon; A. Vacchi; N. Zampa; D. Bergström; P. Carlson; Tom Francke; S. Grinstein; N. Weber; M. Suffert; M. Hof; J. Kremer; W. Menn; Michael Simon; S. A. Stephens; M. Ambriola; R. Bellotti; F. Cafagna; F. Ciacio; M. Circella; C. De Marzo; N. Finetti; P. Papini; S. Piccardi; P. Spillantini; S. Bartalucci; M. Ricci; C. Grimani

Two recent balloon-borne experiments have been performed by the Wizard/CAPRICE collaboration in order to study the electron and positron components in the cosmic radiation. On 1994 August 8-9 the CAPRICE94 experiment flew from norther Canada and on 1998 May 28-29 the CAPRICE98 experiment flew from New Mexico, USA at altitude8 corresponding to 3.9 and 5.5 g/cm2 of average residual atmosphere respectively. The apparatus were equipped with a Ring Imaging Cherenkov (RICH) detector, a time-of-flight system, a superconducting magnet spectrometer with a tracking system and a 7-radiation-length silicon-tungsten imaging calorimeter. The RICH used in 1994 had a solid NaF radiator while in 1998 the RICH had a CbFlO gaseous radiator. We report on the electron and positron spectra and positron fraction at the top of the atmosphere from few hundred MeV to 40 GeV measured by these two experiments.


The Astrophysical Journal | 2000

First Mass-resolved Measurement of High-Energy Cosmic-Ray Antiprotons.

D. Bergström; M. Boezio; P. Carlson; Tom Francke; S. Grinstein; F. Khalchukov; M. Suffert; M. Hof; J. Kremer; W. Menn; Michael Simon; S. A. Stephens; M. Ambriola; R. Bellotti; F. Cafagna; F. Ciacio; M. Circella; C. De Marzo; N. Finetti; P. Papini; S. Piccardi; P. Spillantini; S. Bartalucci; M. Ricci; M. Casolino; M. P. De Pascale; A. Morselli; Piergiorgio Picozza; R. Sparvoli; V. Bonvicini

We report new results for the cosmic-ray antiproton-to-proton ratio from 3 to 50 GeV at the top of the atmosphere. These results represent the first measurements, on an event-by-event basis, of mass-resolved antiprotons above 18 GeV. The results were obtained with the NMSU-WIZARD/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas-RICH (Ring-Imaging Cerenkov) counter and a silicon-tungsten imaging calorimeter. The RICH detector was the first ever flown that is capable of identifying charge-one particles at energies above 5 GeV. The spectrometer was flown on 1998 May 28-29 from Fort Sumner, New Mexico. The measured p&d1;/p ratio is in agreement with a pure secondary interstellar production.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1994

Results from beam tests of the CAPRICE RICH detector

P. Carlson; T. Francke; S. Löfgren; N. Weber; M. Suffert

Abstract A compact RICH counter using a solid NaF radiator and pad readout has been developed and tested in particle beams. The good transmission of the optical elements together with a low noise level in the electronics results in a large number of detected photoelectrons per event. More than 20 photoelectrons are detected per event for Z = 1 particles with β > 0.9 at perpendicular incidence. The reconstructed Cherenkov angle has a resolution of 4.2 mrad at perpendicular incidence ( β = 0.9-1) and 19 mrad at 30° incidence angle. For light ions ( Z


The Astrophysical Journal | 2004

High-energy deuteron measurement with the CAPRICE98 experiment

P. Papini; S. Piccardi; P. Spillantini; E. Vannuccini; M. Ambriola; R. Bellotti; F. Cafagna; F. Ciacio; M. Circella; C. De Marzo; S. Bartalucci; M. Ricci; D. Bergström; P. Carlson; T. Francke; P. Hansen; E. Mocchiutti; M. Boezio; V. Bonvicini; P. Schiavon; A. Vacchi; N. Zampa; Ulisse Bravar; S.J. Stochaj; M. Casolino; M. P. De Pascale; A. Morselli; P. Picozza; R. Sparvoli; M. Hof

We report the first measurement of the deuterium abundance in cosmic rays above 10 GeV nucleon � 1 of kinetic energy. The data were collected by the balloon-borne experiment CAPRICE98, which was flown on 1998 May 28–29 from Fort Sumner, New Mexico. The detector configuration included the NMSU-WiZard/CAPRICE superconducting magnet spectrometer equipped with a gas RICH detector, a silicon-tungsten calorimeter, and a time-of-flight system. By combining the information from the spectrometer and the RICH detector, it was possible to separate deuterons from protons in the kinetic energy range from 12 to 22 GeV nucleon � 1 .I n order to estimate the proton background and the deuteron selection efficiency, we developed an empirical model for the response of the instrument, based on the data collected in this experiment. The analysis procedure is described in this paper, and the result on the absolute flux of deuterium is presented. We found that the deuterium abundance at high energy is consistent with the hypothesis that the propagation mechanism of light nuclei is the same as that of heavier secondary components. Subject headings: balloons — cosmic rays — Galaxy: abundances — ISM: abundances

Collaboration


Dive into the M. Suffert's collaboration.

Top Co-Authors

Avatar

M. Hof

University of Siegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. P. De Pascale

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

S. Piccardi

University of Florence

View shared research outputs
Top Co-Authors

Avatar

P. Papini

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Morselli

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Tom Francke

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

N. Finetti

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge