Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Swoboda is active.

Publication


Featured researches published by M. Swoboda.


Nature | 2010

Electron localization following attosecond molecular photoionization

Giuseppe Sansone; Freek Kelkensberg; J. F. Pérez-Torres; Felipe Morales; Matthias F. Kling; W. Siu; O. Ghafur; Per Johnsson; M. Swoboda; E. Benedetti; F. Ferrari; F. Lépine; J L Sanz-Vicario; Sergey Zherebtsov; Irina Znakovskaya; Anne L'Huillier; Misha Ivanov; M. Nisoli; Fernando Martín; M. J. J. Vrakking

For the past several decades, we have been able to directly probe the motion of atoms that is associated with chemical transformations and which occurs on the femtosecond (10−15-s) timescale. However, studying the inner workings of atoms and molecules on the electronic timescale has become possible only with the recent development of isolated attosecond (10−18-s) laser pulses. Such pulses have been used to investigate atomic photoexcitation and photoionization and electron dynamics in solids, and in molecules could help explore the prompt charge redistribution and localization that accompany photoexcitation processes. In recent work, the dissociative ionization of H2 and D2 was monitored on femtosecond timescales and controlled using few-cycle near-infrared laser pulses. Here we report a molecular attosecond pump–probe experiment based on that work: H2 and D2 are dissociatively ionized by a sequence comprising an isolated attosecond ultraviolet pulse and an intense few-cycle infrared pulse, and a localization of the electronic charge distribution within the molecule is measured that depends—with attosecond time resolution—on the delay between the pump and probe pulses. The localization occurs by means of two mechanisms, where the infrared laser influences the photoionization or the dissociation of the molecular ion. In the first case, charge localization arises from quantum mechanical interference involving autoionizing states and the laser-altered wavefunction of the departing electron. In the second case, charge localization arises owing to laser-driven population transfer between different electronic states of the molecular ion. These results establish attosecond pump–probe strategies as a powerful tool for investigating the complex molecular dynamics that result from the coupling between electronic and nuclear motions beyond the usual Born–Oppenheimer approximation.


Physical Review Letters | 2011

Probing Single-Photon Ionization on the Attosecond Time Scale

Mathieu Gisselbrecht; Kathrin Klünder; Jessica Dahlstrom; Thomas Fordell; M. Swoboda; Diego Guenot; Per Johnsson; J. Caillat; Johan Mauritsson; Alfred Maquet; Richard Taïeb; Anne L'Huillier

We study photoionization of argon atoms excited by attosecond pulses using an interferometric measurement technique. We measure the difference in time delays between electrons emitted from the 3s(2) and from the 3p(6) shell, at different excitation energies ranging from 32 to 42 eV. The determination of photoemission time delays requires taking into account the measurement process, involving the interaction with a probing infrared field. This contribution can be estimated using a universal formula and is found to account for a substantial fraction of the measured delay.


Physical Review Letters | 2010

Attosecond Electron Spectroscopy Using a Novel Interferometric Pump-Probe Technique

Johan Mauritsson; Thomas Remetter; M. Swoboda; Kathrin Klünder; Anne L'Huillier; K. J. Schafer; O. Ghafur; Freek Kelkensberg; W. Siu; Per Johnsson; M. J. J. Vrakking; Irina Znakovskaya; Thorsten Uphues; Sergey Zherebtsov; Matthias F. Kling; F. Lépine; E. Benedetti; Federico Ferrari; Giuseppe Sansone; M. Nisoli

We present an interferometric pump-probe technique for the characterization of attosecond electron wave packets (WPs) that uses a free WP as a reference to measure a bound WP. We demonstrate our method by exciting helium atoms using an attosecond pulse (AP) with a bandwidth centered near the ionization threshold, thus creating both a bound and a free WP simultaneously. After a variable delay, the bound WP is ionized by a few-cycle infrared laser precisely synchronized to the original AP. By measuring the delay-dependent photoelectron spectrum we obtain an interferogram that contains both quantum beats as well as multipath interference. Analysis of the interferogram allows us to determine the bound WP components with a spectral resolution much better than the inverse of the AP duration.


Physical Review Letters | 2008

Coherent electron scattering captured by an attosecond quantum stroboscope.

Johan Mauritsson; Per Johnsson; Erik Mansten; M. Swoboda; Thierry Ruchon; Anne L'Huillier; Kenneth J. Schafer

We demonstrate a quantum stroboscope based on a sequence of identical attosecond pulses that are used to release electrons into a strong infrared (IR) laser field exactly once per laser cycle. The resulting electron momentum distributions are recorded as a function of time delay between the IR laser and the attosecond pulse train using a velocity map imaging spectrometer. Because our train of attosecond pulses creates a train of identical electron wave packets, a single ionization event can be studied stroboscopically. This technique has enabled us to image the coherent electron scattering that takes place when the IR field is sufficiently strong to reverse the initial direction of the electron motion causing it to rescatter from its parent ion.


Physical Review Letters | 2010

Phase Measurement of Resonant Two-Photon Ionization in Helium

M. Swoboda; Thomas Fordell; Kathrin Klünder; Jessica Dahlstrom; Miguel Miranda; Christian Buth; K. J. Schafer; Johan Mauritsson; Anne L'Huillier; Mathieu Gisselbrecht

We study resonant two-color two-photon ionization of helium via the 1s3p (1)P(1) state. The first color is the 15th harmonic of a tunable Ti:sapphire laser, while the second color is the fundamental laser radiation. Our method uses phase-locked high-order harmonics to determine the phase of the two-photon process by interferometry. The measurement of the two-photon ionization phase variation as a function of detuning from the resonance and intensity of the dressing field allows us to determine the intensity dependence of the transition energy.


Optics Letters | 2007

Broadband attosecond pulse shaping

E. Gustafsson; Thierry Ruchon; M. Swoboda; Thomas Remetter; Emilie Pourtal; R. Lopez-Martens; Philippe Balcou; Anne L'Huillier

We present experiments on the control over spectral amplitude and phase of attosecond pulses, using metallic and semiconductor thin-film dispersive filters. A pulse duration as short as 130 as is obtained.


New Journal of Physics | 2008

Spectral shaping of attosecond pulses using two-colour laser fields

Erik Mansten; Jan Marcus Dahlström; Per Johnsson; M. Swoboda; Anne L'Huillier; Johan Mauritsson

We use a strong two-colour laser field composed of the fundamental (800 nm) and the second harmonic (400 nm) of an infrared (IR) laser field to generate attosecond pulses with controlled spectral and temporal properties. With a second-harmonic intensity equal to 15% of the IR intensity the second-harmonic field is strong enough to significantly alter and control the electron trajectories in the generation process. This enables us to tune the central photon energy of the attosecond pulses by changing the phase difference between the IR and the second-harmonic fields. In the time domain the radiation is emitted as a sequence of pulses separated by a full IR cycle. We also perform calculations showing that the effect of even stronger second-harmonic fields leads to an extended tunable range under conditions that are experimentally feasible.


New Journal of Physics | 2008

Macroscopic effects in attosecond pulse generation

Thierry Ruchon; Christoph P. Hauri; Katalin Varjú; Erik Mansten; M. Swoboda; Rodrigo Lopez-Martens; Anne L'Huillier

We examine how the generation and propagation of high-order harmonics in a partly ionized gas medium affect their strength and synchronization. The temporal properties of the resulting attosecond pulses generated in long gas targets can be significantly influenced by macroscopic effects, in particular by the intensity in the medium and the degree of ionization which control the dispersion. Under some conditions, the use of gas targets longer than the absorption length can lead to the generation of compressed attosecond pulses. We show these macroscopic effects experimentally, using a 6 mm-long argon-filled gas cell as the generating medium.


Laser Physics | 2009

Intensity dependence of laser-assisted attosecond photoionization spectra

M. Swoboda; Jan Marcus Dahlström; Thierry Ruchon; Per Johnsson; Johan Mauritsson; A. L’Huillier; K. J. Schafer

We study experimentally the influence of the intensity of the infrared (IR) probe field on attosecond pulse train (APT) phase measurements performed with the RABITT method (Reconstruction of Attosecond Beating by Interference in Two-Photon Transitions). We find that if a strong IR field is applied, the attosecond pulses will appear to have lower-than-actual chirp rates. We also observe the onset of the streaking regime in the breakdown of the weak-field RABITT conditions. We perform a Fourier-analysis of harmonic and sideband continuum states and show that the mutual phase relation of the harmonics can be extracted from higher Fourier components.


european quantum electronics conference | 2009

Attosecond electron interferometry

Johan Mauritsson; Thomas Remetter; M. Swoboda; Kathrin Klünder; Anne L'Huillier; Kenneth J. Schafer; O. Ghafur; F. Kelkensberg; W. Siu; Per Johnsson; Marc J. J. Vrakking; Irina Znakovskaya; T. Uphues; Sergey Zherebtsov; Matthias F. Kling; F. Lépine; E. Benedetti; F. Ferrari; Giuseppe Sansone; M. Nisoli

The basic properties of atoms, molecules, and solids are governed by ultrafast electron dynamics. Attosecond pulses bear the promise to resolve these electronic dynamics on their natural time scale, the atomic unit of time, which is 24 attoseconds. The high frequency of the pulses, however, means that in most of the experiments performed so far the electrons that are excited by attosecond pulses are directly moved into the ionization continuum, where they rapidly disperse [1,2]. More interesting dynamics arise when electrons are excited into bound [3] or autoionizing states [4]. Here we present a method to determine the dynamics of a bound wave packet excited by an attosecond pulse, while - for the first time - keeping track of its spectral content with high precision. The key idea is that coincident with the creation of the bound wave packet, we also launch a broad continuum wave packet (Fig. 1). This free wave packet serves as a reference when, after a variable delay, the bound wave packet is ionized by a 7 fs infrared laser pulse, locked in phase with the bound wave packet. The interference fringes observed in the photoelectron spectrum enable precise determination of the bound electron wave packet. As in Ramsey spectroscopy, the spectral precision is here set not by the bandwidth of the excitation pulse, but by the delay between the pump and probe pulses as well as the experimental energy resolution of the photoelectron spectrometer used.

Collaboration


Dive into the M. Swoboda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. J. Schafer

Louisiana State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge