M. Symeonidis
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Symeonidis.
Astronomy and Astrophysics | 2010
H. T. Nguyen; Bernhard Schulz; L. Levenson; A. Amblard; V. Arumugam; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; N. Castro-Rodriguez; A. Cava; P. Chanial; Edward L. Chapin; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Stephen Anthony Eales; D. Elbaz; M. Fox; A. Franceschini; Walter Kieran Gear; J. Glenn; Matthew Joseph Griffin; M. Halpern; E. Hatziminaoglou
We report on the sensitivity of SPIRE photometers on the Herschel Space Observatory. Specifically, we measure the confusion noise from observations taken during the Science Demonstration Phase of the Herschel Multi-tiered Extragalactic Survey. Confusion noise is defined to be the spatial variation of the sky intensity in the limit of infinite integration time, and is found to be consistent among the different fields in our survey at the level of 5.8, 6.3 and 6.8 mJy/beam at 250, 350 and 500 microns, respectively. These results, together with the measured instrument noise, may be used to estimate the integration time required for confusion-limited maps, and provide a noise estimate for maps obtained by SPIRE.
Astronomy and Astrophysics | 2010
Seb Oliver; L. Wang; A. J. Smith; B. Altieri; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; D. Burgarella; N. Castro-Rodríguez; A. Cava; P. Chanial; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Stephen Anthony Eales; D. Elbaz; M. Fox; A. Franceschini; Walter Kieran Gear; J. Glenn; Matthew Joseph Griffin
Emission at far-infrared wavelengths makes up a significant fraction of the total light detected from galaxies over the age of Universe. Herschel provides an opportunity for studying galaxies at the peak wavelength of their emission. Our aim is to provide a benchmark for models of galaxy population evolution and to test pre-existing models of galaxies. With the Herschel Multi-tiered Extra-galactic survey, HerMES, we have observed a number of fields of different areas and sensitivity using the SPIRE instrument on Herschel. We have determined the number counts of galaxies down to ~20 mJy. Our constraints from directly counting galaxies are consistent with, though more precise than, estimates from the BLAST fluctuation analysis. We have found a steep rise in the Euclidean normalised counts <100 mJy. We have directly resolved ~15% of the infrared extra-galactic background at the wavelength near where it peaks.
Publications of the Astronomical Society of the Pacific | 2010
A. Boselli; Stephen Anthony Eales; Luca Cortese; G. J. Bendo; P. Chanial; V. Buat; Jonathan Ivor Davies; Robbie Richard Auld; E. Rigby; M. Baes; M. J. Barlow; James J. Bock; M. Bradford; N. Castro-Rodriguez; S. Charlot; D. L. Clements; D. Cormier; E. Dwek; D. Elbaz; M. Galametz; F. Galliano; Walter Kieran Gear; J. Glenn; Haley Louise Gomez; Matthew Joseph Griffin; Sacha Hony; Kate Gudrun Isaak; L. Levenson; N. Lu; S. Madden
The Herschel Reference Survey is a Herschel guaranteed time key project and will be a benchmark study of dust in the nearby universe. The survey will complement a number of other Herschel key projects including large cosmological surveys that trace dust in the distant universe. We will use Herschel to produce images of a statistically-complete sample of 323 galaxies at 250, 350, and 500 μm. The sample is volume-limited, containing sources with distances between 15 and 25 Mpc and flux limits in the K band to minimize the selection effects associated with dust and with young high-mass stars and to introduce a selection in stellar mass. The sample spans the whole range of morphological types (ellipticals to late-type spirals) and environments (from the field to the center of the Virgo Cluster) and as such will be useful for other purposes than our own. We plan to use the survey to investigate (i) the dust content of galaxies as a function of Hubble type, stellar mass, and environment; (ii) the connection between the dust content and composition and the other phases of the interstellar medium; and (iii) the origin and evolution of dust in galaxies. In this article, we describe the goals of the survey, the details of the sample and some of the auxiliary observing programs that we have started to collect complementary data. We also use the available multifrequency data to carry out an analysis of the statistical properties of the sample.
Astronomy and Astrophysics | 2010
E. Hatziminaoglou; A. Omont; J. A. Stevens; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; D. Burgarella; N. Castro-Rodriguez; A. Cava; P. Chanial; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; Eli Dwek; Simon Dye; Stephen Anthony Eales; D. Elbaz; D. Farrah; M. Fox; A. Franceschini; Walter Kieran Gear; J. Glenn
Nuclear and starburst activity are known to often occur concomitantly. Herschel-SPIRE provides sampling of the FIR SEDs of type 1 and type 2 AGN, allowing for the separation between the hot dust (torus) and cold dust (starburst) emission. We study large samples of spectroscopically confirmed type 1 and type 2 AGN lying within the Herschel Multi-tiered Extragalactic Survey (HerMES) fields observed during the science demonstration phase, aiming to understand their FIR colour distributions and constrain their starburst contributions. We find that one third of the spectroscopically confirmed AGN in the HerMES fields have 5-sigma detections at 250um, in agreement with previous (sub)mm AGN studies. Their combined Spitzer-MIPS and Herschel-SPIRE colours - specifically S(250)/S(70) vs. S(70)/S(24) - quite clearly separate them from the non-AGN, star-forming galaxy population, as their 24-um flux is dominated by the hot torus emission. However, their SPIRE colours alone do not differ from those of non-AGN galaxies. SED fitting shows that all those AGN need a starburst component to fully account for their FIR emission. For objects at z > 2, we find a correlation between the infrared luminosity attributed to the starburst component, L(SB), and the AGN accretion luminosity, L(acc), with L(SB) propto L(acc)^0.35. Type 2 AGN detected at 250um show on average higher L(SB) than type 1 objects but their number is still too low to establish whether this trend indicates stronger star-formation activity.
Nature | 2012
M. J. Page; M. Symeonidis; J. D. Vieira; B. Altieri; A. Amblard; V. Arumugam; H. Aussel; T. Babbedge; A. W. Blain; J. J. Bock; A. Boselli; V. Buat; N. Castro-Rodriguez; A. Cava; P. Chanial; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; E. N. Dubois; James Dunlop; Eli Dwek; Simon Dye; Stephen Anthony Eales; David Elbaz; D. Farrah; M. Fox; A. Franceschini; Walter Kieran Gear
The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2–6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 1044 ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy’s properties in a brief period of cosmic time.
Astronomy and Astrophysics | 2010
G. J. Bendo; C. D. Wilson; Michael Pohlen; Marc Sauvage; Robbie Richard Auld; M. Baes; M. J. Barlow; J. J. Bock; A. Boselli; M. Bradford; V. Buat; N. Castro-Rodriguez; P. Chanial; S. Charlot; L. Ciesla; D. L. Clements; A. Cooray; D. Cormier; Luca Cortese; Jonathan Ivor Davies; Eli Dwek; Stephen Anthony Eales; D. Elbaz; M. Galametz; F. Galliano; Walter Kieran Gear; J. Glenn; Haley Louise Gomez; Matthew Joseph Griffin; Sacha Hony
We use Herschel Space Observatory data to place observational constraints on the peak and Rayleigh-Jeans slope of dust emission observed at 70–500 μm in the nearby spiral galaxy M81. We find that the ratios of wave bands between 160 and 500 μm are primarily dependent on radius but that the ratio of 70 to 160 μm emission shows no clear dependence on surface brightness or radius. These results along with analyses of the spectral energy distributions imply that the 160–500 μm emission traces 15–30 K dust heated by evolved stars in the bulge and disc whereas the 70 μm emission includes dust heated by the active galactic nucleus and young stars in star forming regions.
web science | 2010
Seb Oliver; Martin Kunz; B. Altieri; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; T. Babbedge; M. Béthermin; A. W. Blain; James J. Bock; A. Boselli; D. Brisbin; V. Buat; D. Burgarella; N. Castro-Rodriguez; A. Cava; P. Chanial; Edward L. Chapin; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; E. Dwek; S. Dye; Stephen Anthony Eales; D. Elbaz; D. Farrah; M. Fox
We present the cross-identification and source photometry techniques used to process Herschel SPIRE imaging taken as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES). Cross-identifications are performed in map-space so as to minimize source-blending effects. We make use of a combination of linear inversion and model selection techniques to produce reliable cross-identification catalogues based on Spitzer MIPS 24-mu m source positions. Testing on simulations and real Herschel observations shows that this approach gives robust results for even the faintest sources (S-250 similar to 10 mJy). We apply our new technique to HerMES SPIRE observations taken as part of the science demonstration phase of Herschel. For our real SPIRE observations, we show that, for bright unconfused sources, our flux density estimates are in good agreement with those produced via more traditional point source detection methods (SUSSEXtractor) by Smith et al. When compared to the measured number density of sources in the SPIRE bands, we show that our method allows the recovery of a larger fraction of faint sources than these traditional methods. However, this completeness is heavily dependent on the relative depth of the existing 24-mu m catalogues and SPIRE imaging. Using our deepest multiwavelength data set in the GOODS-N, we estimate that the use of shallow 24-mu m catalogues in our other fields introduces an incompleteness at faint levels of between 20-40 per cent at 250 mu m.
Monthly Notices of the Royal Astronomical Society | 2013
M. Symeonidis; M. Vaccari; S. Berta; Mat Page; D. Lutz; V. Arumugam; H. Aussel; J. J. Bock; A. Boselli; V. Buat; P. Capak; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; D. Farrah; A. Franceschini; E. Giovannoli; J. Glenn; Matthew Joseph Griffin; E. Hatziminaoglou; Ho Seong Hwang; E. Ibar; O. Ilbert; R. J. Ivison; E. Le Floc'h; S. J. Lilly; J. Kartaltepe; B. Magnelli
Using Herschel data from the deepest SPIRE and PACS surveys (HerMES and PEP) in COSMOS, GOODS-S and GOODS-N, we examine the dust properties of infrared (IR)-luminous (LIR > 1010 L⊙) galaxies at 0.1 45 K) SEDs and cold (T < 25 K), cirrus-dominated SEDs are rare, with most sources being within the range occupied by warm starbursts such as M82 and cool spirals such as M51. We observe a luminosity–temperature (L-T) relation, where the average dust temperature of log [LIR/L⊙] ∼ 12.5 galaxies is about 10 K higher than that of their log [LIR/L⊙] ∼ 10.5 counterparts. However, although the increased dust heating in more luminous systems is the driving factor behind the L-T relation, the increase in dust mass and/or starburst size with luminosity plays a dominant role in shaping it. Our results show that the dust conditions in IR-luminous sources evolve with cosmic time: at high redshift, dust temperatures are on average up to 10 K lower than what is measured locally (z ≲ 0.1). This is manifested as a flattening of the L-T relation, suggesting that (ultra)luminous infrared galaxies [(U)LIRGs] in the early Universe are typically characterized by a more extended dust distribution and/or higher dust masses than local equivalent sources. Interestingly, the evolution in dust temperature is luminosity dependent, with the fraction of LIRGs with T < 35 K showing a two-fold increase from z ∼ 0 to z ∼ 2, whereas that of ULIRGs with T < 35 K shows a six-fold increase. Our results suggest a greater diversity in the IR-luminous population at high redshift, particularly for ULIRGs.
Monthly Notices of the Royal Astronomical Society | 2014
Andrea Merloni; A. Bongiorno; M. Brusa; Kazushi Iwasawa; V. Mainieri; B. Magnelli; M. Salvato; S. Berta; N. Cappelluti; A. Comastri; F. Fiore; R. Gilli; Anton M. Koekemoer; E. Le Floc'h; E. Lusso; D. Lutz; Takamitsu Miyaji; F. Pozzi; L. Riguccini; D. Rosario; J. D. Silverman; M. Symeonidis; Ezequiel Treister; C. Vignali; G. Zamorani
We study the incidence of nuclear obscuration on a complete sample of 1310 AGN selected on the basis of their rest-frame 2‐10 keV X-ray flux from the XM M-COSMOS survey, in the redshift range 0.3 < z < 3.5. We classify the AGN as obscured or un-obscured on the basis of either the optical spectral properties and the over all SED or the shape of the X-ray spectrum. The two classifications agree in about 70% of the ob jects, and the remaining 30% can be further subdivided into two distinct classes: at low l uminosities X-ray un-obscured AGN do not always show signs of broad lines or blue/UV continuum emission in their optical spectra, most likely due to galaxy dilution effects; a t high luminosities broad line AGN may have absorbed X-ray spectra, which hints at an increased incidence of small-scale (subparsec) dust-free obscuration. We confirm that the fraction of obscured AGN is a decreasing function of the intrinsic X-ray luminosity, while the incid ence of absorption shows significant evolution only for the most luminous AGN, which appear to be more commonly obscured at higher redshift. We find no significant difference between th e mean stellar masses and star formation rates of obscured and un-obscured AGN hosts. We conclude that the physical state of the medium responsible for obscuration in AGN is complex, and mainly determined by the radiation environment (nuclear luminosity) in a small region enclosed within the gravitational sphere of influence of the central black hole, but is la rgely insensitive to the wider scale galactic conditions.
Monthly Notices of the Royal Astronomical Society | 2012
D. J. B. Smith; Loretta Dunne; E. da Cunha; K. Rowlands; Steve Maddox; Haley Louise Gomez; D. G. Bonfield; S. Charlot; Simon P. Driver; Cristina Popescu; Richard J. Tuffs; James Dunlop; M. J. Jarvis; N. Seymour; M. Symeonidis; M. Baes; N. Bourne; D. L. Clements; A. Cooray; G. De Zotti; Simon Dye; Stephen Anthony Eales; D. Scott; A. Verma; P. van der Werf; E. Andrae; R. Auld; S. Buttiglione; A. Cava; A. Dariush
We present a pan-chromatic analysis of an unprecedented sample of 1402 250 μm selected galaxies at z < 0.5 () from the Herschel-ATLAS survey. We complement our Herschel 100–500 μm data with UV–K-band photometry from the Galaxy And Mass Assembly (GAMA) survey and apply the magphys energy-balance technique to produce pan-chromatic spectral energy distributions (SEDs) for a representative sample of 250 μm selected galaxies spanning the most recent 5 Gyr of cosmic history. We derive estimates of physical parameters, including star formation rates, stellar masses, dust masses and infrared (IR) luminosities. The typical H-ATLAS galaxy at z < 0.5 has a far-infrared luminosity in the range 1010–1012 L⊙ (SFR: 1–50 M⊙ yr−1) and thus is broadly representative of normal star-forming galaxies over this redshift range. We show that 250 μm selected galaxies contain a larger mass of dust at a given IR luminosity or star formation rate than previous samples selected at 60 μm from the IRAS. We derive typical SEDs for H-ATLAS galaxies, and show that the emergent SED shape is most sensitive to specific star formation rate. The optical–UV SEDs also become more reddened due to dust at higher redshifts. Our template SEDs are significantly cooler than existing IR templates. They may therefore be most appropriate for inferring total IR luminosities from moderate redshift sub-millimetre selected samples and for inclusion in models of the lower redshift sub-millimetre galaxy populations.