Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Tampo is active.

Publication


Featured researches published by M. Tampo.


Nature | 2001

Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition

R. Kodama; P.A. Norreys; K. Mima; A. E. Dangor; R. G. Evans; Hisanori Fujita; Y. Kitagawa; K. M. Krushelnick; T. Miyakoshi; Noriaki Miyanaga; T. Norimatsu; S. J. Rose; T. Shozaki; Keisuke Shigemori; Atsushi Sunahara; M. Tampo; K. A. Tanaka; Y. Toyama; T. Yamanaka; M. Zepf

Modern high-power lasers can generate extreme states of matter that are relevant to astrophysics, equation-of-state studies and fusion energy research. Laser-driven implosions of spherical polymer shells have, for example, achieved an increase in density of 1,000 times relative to the solid state. These densities are large enough to enable controlled fusion, but to achieve energy gain a small volume of compressed fuel (known as the ‘spark’) must be heated to temperatures of about 108 K (corresponding to thermal energies in excess of 10 keV). In the conventional approach to controlled fusion, the spark is both produced and heated by accurately timed shock waves, but this process requires both precise implosion symmetry and a very large drive energy. In principle, these requirements can be significantly relaxed by performing the compression and fast heating separately; however, this ‘fast ignitor’ approach also suffers drawbacks, such as propagation losses and deflection of the ultra-intense laser pulse by the plasma surrounding the compressed fuel. Here we employ a new compression geometry that eliminates these problems; we combine production of compressed matter in a laser-driven implosion with picosecond-fast heating by a laser pulse timed to coincide with the peak compression. Our approach therefore permits efficient compression and heating to be carried out simultaneously, providing a route to efficient fusion energy production.


Nature | 2004

Plasma devices to guide and collimate a high density of MeV electrons

R. Kodama; Y. Sentoku; Z. L. Chen; G. R. Kumar; S. P. Hatchett; Y. Toyama; T. E. Cowan; R. R Freeman; J. Fuchs; Y. Izawa; M. H. Key; Y. Kitagawa; K. Kondo; Takahiro Matsuoka; H. Nakamura; M. Nakatsutsumi; P.A. Norreys; T. Norimatsu; R. A. Snavely; R. Stephens; M. Tampo; K. A. Tanaka; T. Yabuuchi

The development of ultra-intense lasers has facilitated new studies in laboratory astrophysics and high-density nuclear science, including laser fusion. Such research relies on the efficient generation of enormous numbers of high-energy charged particles. For example, laser–matter interactions at petawatt (1015 W) power levels can create pulses of MeV electrons with current densities as large as 1012 A cm-2. However, the divergence of these particle beams usually reduces the current density to a few times 106 A cm-2 at distances of the order of centimetres from the source. The invention of devices that can direct such intense, pulsed energetic beams will revolutionize their applications. Here we report high-conductivity devices consisting of transient plasmas that increase the energy density of MeV electrons generated in laser–matter interactions by more than one order of magnitude. A plasma fibre created on a hollow-cone target guides and collimates electrons in a manner akin to the control of light by an optical fibre and collimator. Such plasma devices hold promise for applications using high energy-density particles and should trigger growth in charged particle optics.


Applied Physics Letters | 2002

Characterization of a gamma-ray source based on a laser-plasma accelerator with applications to radiography

R.D. Edwards; M.A. Sinclair; T.J. Goldsack; K. Krushelnick; F. N. Beg; E.L. Clark; A. E. Dangor; Z. Najmudin; M. Tatarakis; B. Walton; Matthew Zepf; K.W.D. Ledingham; I. Spencer; P.A. Norreys; R. J. Clarke; R. Kodama; Y. Toyama; M. Tampo

The application of high intensity laser-produced gamma rays is discussed with regard to picosecond resolution deep-penetration radiography. The spectrum and angular distribution of these gamma rays is measured using an array of thermoluminescent detectors for both an underdense (gas) target and an overdense (solid) target. It is found that the use of an underdense target in a laser plasma accelerator configuration produces a much more intense and directional source. The peak dose is also increased significantly. Radiography is demonstrated in these experiments and the source size is also estimated.


Physics of Plasmas | 2007

Laser generated proton beam focusing and high temperature isochoric heating of solid matter

Richard Adolph Snavely; B. Zhang; K. Akli; Z. L. Chen; R. R. Freeman; P. Gu; S. P. Hatchett; D. Hey; Jeremy Hill; M.H. Key; Y. Izawa; J.A. King; Y. Kitagawa; R. Kodama; A. B. Langdon; Barbara F. Lasinski; Anle Lei; A. J. Mackinnon; P. K. Patel; R. Stephens; M. Tampo; K. A. Tanaka; R. P. J. Town; Y. Toyama; T. Tsutsumi; S. C. Wilks; T. Yabuuchi; Jian Zheng

The results of laser-driven proton beam focusing and heating with a high energy (170J) short pulse are reported. Thin hemispherical aluminum shells are illuminated with the Gekko petawatt laser using 1μm light at intensities of ∼3×1018W∕cm2 and measured heating of thin Al slabs. The heating pattern is inferred by imaging visible and extreme-ultraviolet light Planckian emission from the rear surface. When Al slabs 100μm thick were placed at distances spanning the proton focus beam waist, the highest temperatures were produced at 0.94× the hemisphere radius beyond the equatorial plane. Isochoric heating temperatures reached 81eV in 15μm thick foils. The heating with a three-dimensional Monte Carlo model of proton transport with self-consistent heating and proton stopping in hot plasma was modeled.


Physics of Plasmas | 2007

On the behavior of ultraintense laser produced hot electrons in self-excited fields

T. Yabuuchi; K. Adumi; H. Habara; R. Kodama; K. Kondo; T. Tanimoto; K. A. Tanaka; Y. Sentoku; Takahiro Matsuoka; Z. L. Chen; M. Tampo; Anle Lei; Kunioki Mima

A large number of hot electrons exceeding the Alfven current can be produced when an ultraintense laser pulse irradiates a solid target. Self-excited extreme electrostatic and magnetic fields at the target rear could influence the electron trajectory. In order to investigate the influence, we measure the hot electrons when a plasma was created on the target rear surface in advance and observe an increase of the electron number by a factor of 2. This increase may be due to changes in the electrostatic potential formation process with the rear plasma. Using a one-dimensional particle-in-cell simulation, it is shown that the retardation in the electrostatic potential formation lengthens the gate time when electrons can escape from the target. The electron number escaping within the lengthened time window appears to be much smaller than the net produced number and is consistent with our estimation using the Alfven limit.


New Journal of Physics | 2008

Space and time resolved measurements of the heating of solids to ten million kelvin by a petawatt laser

M. Nakatsutsumi; J. R. Davies; R. Kodama; J.S. Green; K. L. Lancaster; K. U. Akli; F. N. Beg; Sophia Chen; D. Clark; R. R. Freeman; C. D. Gregory; H. Habara; R. Heathcote; D. Hey; K. Highbarger; P. A. Jaanimagi; M.H. Key; K. Krushelnick; T. Ma; A. G. MacPhee; A. J. Mackinnon; H. Nakamura; R. Stephens; M. Storm; M. Tampo; W. Theobald; L. Van Woerkom; R. L. Weber; Mingsheng Wei; N. Woolsey

The heating of plane solid targets by the Vulcan petawatt laser at powers of 0.32–0.73 PW and intensities of up to 4×1020 W cm−2 has been diagnosed with a temporal resolution of 17 ps and a spatial resolution of 30 μm, by measuring optical emission from the opposite side of the target to the laser with a streak camera. Second harmonic emission was filtered out and the target viewed at an angle to eliminate optical transition radiation. Spatial resolution was obtained by imaging the emission onto a bundle of fibre optics, arranged into a one-dimensional array at the camera entrance. The results show that a region 160 μm in diameter can be heated to a temperature of ~107 K (kT/e~ keV) in solid targets from 10 to 20 μm thick and that this temperature is maintained for at least 20 ps, confirming the utility of PW lasers in the study of high energy density physics. Hybrid code modelling shows that magnetic field generation prevents increased target heating by electron refluxing above a certain target thickness and that the absorption of laser energy into electrons entering the solid target was between 15–30%, and tends to increase with laser energy.


Physics of Plasmas | 2005

Broad-range neutron spectra identification in ultraintense laser interactions with carbon-deuterated plasma

A. Youssef; R. Kodama; H. Habara; K. A. Tanaka; Y. Sentoku; M. Tampo; Y. Toyama

Detailed neutron energy spectra produced from a CD2 target irradiated by a 450fs, 20J, 1053nm laser at an intensity of 3×1018W∕cm2 have been studied. Wide-ranging neutron spectra were observed from two different observation angles 20° and 70° relative to the rear-side target normal. The experiment and numerically calculated spectra, by a three-dimensional Monte Carlo code, indicate that the range of the measured spectra is larger than that produced by the D(d,n)He3 reaction. An interpretation for the measured spectra is introduced by considering the C12(d,n)N13 and D(c12,n)N13 reactions. In addition, the study revealed that the neutron spectra produced by the D–C and C–D reactions can overlap that produced by the D–D reaction, and due to their high cross sections, comparing to the D–D reaction, both of them effectively participate in the neutron yield.


Applied Physics Letters | 2009

Relativistic plasma shutter for ultraintense laser pulses

S. Reed; T. Matsuoka; Stepan Bulanov; M. Tampo; V. Chvykov; G. Kalintchenko; P. Rousseau; V. Yanovsky; R. Kodama; Dale W. Litzenberg; Karl Krushelnick; Anatoly Maksimchuk

A relativistic plasma shutter technique is proposed and tested to remove the sub-100 ps pedestal of a high-intensity laser pulse. The shutter is an ultrathin foil placed before the target of interest. As the leading edge of the laser ionizes the shutter material it will expand into a relativistically underdense plasma allowing for the peak pulse to propagate through while rejecting the low intensity pedestal. An increase in the laser temporal contrast is demonstrated by measuring characteristic signatures in the accelerated proton spectra and directionality from the interaction of 30 TW pulses with ultrathin foils along with supporting hydrodynamic and particle-in-cell simulations.


Physics of Plasmas | 2011

Model experiment of cosmic ray acceleration due to an incoherent wakefield induced by an intense laser pulse

Y. Kuramitsu; N. Nakanii; K. Kondo; Y. Sakawa; Yoshitaka Mori; Eisuke Miura; K. Tsuji; K. Kimura; S. Fukumochi; M. Kashihara; T. Tanimoto; H. Nakamura; T. Ishikura; K. Takeda; M. Tampo; R. Kodama; Yoneyoshi Kitagawa; Kunioki Mima; K. A. Tanaka; Masahiro Hoshino; Hideaki Takabe

The first report on a model experiment of cosmic ray acceleration by using intense laser pulses is presented. Large amplitude light waves are considered to be excited in the upstream regions of relativistic astrophysical shocks and the wakefield acceleration of cosmic rays can take place. By substituting an intense laser pulse for the large amplitude light waves, such shock environments were modeled in a laboratory plasma. A plasma tube, which is created by imploding a hollow polystyrene cylinder, was irradiated by an intense laser pulse. Nonthermal electrons were generated by the wakefield acceleration and the energy distribution functions of the electrons have a power-law component with an index of ∼2. The maximum attainable energy of the electrons in the experiment is discussed by a simple analytic model. In the incoherent wakefield the maximum energy can be much larger than one in the coherent field due to the momentum space diffusion or the energy diffusion of electrons.


Physics of Plasmas | 2007

Reentrant cone angle dependence of the energetic electron slope temperature in high-intensity laser-plasma interactions

M. Nakatsutsumi; R. Kodama; P. A. Norreys; Shinya Awano; Hirotaka Nakamura; Takayoshi Norimatsu; Akira Ooya; M. Tampo; K. Tanaka; T. Tanimoto; T. Tsutsumi; T. Yabuuchi

Energy spectra of fast electrons, generated when high-intensity laser pulses irradiated hollow conical targets, have been measured experimentally. It is shown here that the slope temperature of the fast electrons is strongly dependent on the opening angle of the cone, and has a maximum value at 25°. The data confirms optical guiding of the laser pulse, by comparison of the measured electron temperature with ray-tracing calculations that include absorption in plasmas. The enhanced energy flow and intensity induced by optical guiding of the laser pulse inside the cone as a function of the opening angle as well as the f-number of the focusing optics is discussed.

Collaboration


Dive into the M. Tampo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Yabuuchi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge