Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Tasinkevych is active.

Publication


Featured researches published by M. Tasinkevych.


Soft Matter | 2012

Transport of cargo by catalytic Janus micro-motors

L. Baraban; M. Tasinkevych; M. N. Popescu; S. Sanchez; S. Dietrich; Oliver G. Schmidt

Catalytically active Janus micro-spheres are capable of autonomous motion and can potentially act as carriers for transportation of cargo at the micron-scale. Focusing on the cases in which a single or a pair of Janus micro-motors is used as carrier, we investigate the complex dynamics exhibited by various active carrier–cargo composites.


Nature Communications | 2016

Topographical pathways guide chemical microswimmers

Juliane Simmchen; Jaideep Katuri; William E. Uspal; Mihail N. Popescu; M. Tasinkevych; Samuel Sanchez

Achieving control over the directionality of active colloids is essential for their use in practical applications such as cargo carriers in microfluidic devices. So far, guidance of spherical Janus colloids was mainly realized using specially engineered magnetic multilayer coatings combined with external magnetic fields. Here we demonstrate that step-like submicrometre topographical features can be used as reliable docking and guiding platforms for chemically active spherical Janus colloids. For various topographic features (stripes, squares or circular posts), docking of the colloid at the feature edge is robust and reliable. Furthermore, the colloids move along the edges for significantly long times, which systematically increase with fuel concentration. The observed phenomenology is qualitatively captured by a simple continuum model of self-diffusiophoresis near confining boundaries, indicating that the chemical activity and associated hydrodynamic interactions with the nearby topography are the main physical ingredients behind the observed behaviour.


European Physical Journal E | 2010

Phoretic motion of spheroidal particles due to self-generated solute gradients.

M. N. Popescu; S. Dietrich; M. Tasinkevych; John Ralston

We study theoretically the phoretic motion of a spheroidal particle, which generates solute gradients in the surrounding unbounded solvent via chemical reactions active on its surface in a cap-like region centered at one of the poles of the particle. We derive, within the constraints of the mapping to classical diffusio-phoresis, an analytical expression for the phoretic velocity of such an object. This allows us to analyze in detail the dependence of the velocity on the aspect ratio of the polar and the equatorial diameters of the particle and on the fraction of the particle surface contributing to the chemical reaction. The particular cases of a sphere and of an approximation for a needle-like particle, which are the most common shapes employed in experimental realizations of such self-propelled objects, are obtained from the general solution in the limits that the aspect ratio approaches one or becomes very large, respectively.


EPL | 2011

Pulling and pushing a cargo with a catalytically active carrier

M. N. Popescu; M. Tasinkevych; S. Dietrich

Catalytically active particles suspended in a liquid can move due to self-phoresis by generating solute gradients via chemical reactions of the solvent occurring at parts of their surface. Such particles can be used as carriers at the micro-scale. As a simple model for a carrier-cargo system we consider a catalytically active particle connected by a thin rigid rod to a catalytically inert cargo particle. We show that the velocity of the composite strongly depends on the relative orientation of the carrier-cargo link. Accordingly, there is an optimal configuration for the linkage. The subtlety of such carriers is underscored by the observation that a spherical particle completely covered by catalyst, which is motionless when isolated, acts as a carrier once attached to a cargo.


Physical Review Letters | 2006

Complete wetting of nanosculptured substrates

M. Tasinkevych; S. Dietrich

Complete wetting of geometrically structured substrates by one-component fluids with long-ranged interactions is studied theoretically. We consider periodic arrays of rectangular or parabolic grooves and lattices of cylindrical or parabolic pits. We show that the midpoint interfacial heights within grooves and pits are related in the same way as for complete wedge and cone filling. For sufficiently deep cavities with vertical walls and small undersaturation, an effective planar scaling regime emerges. The scaling exponent is -1/3 in all cases studied, and only the amplitudes depend on the geometrical features. We find quantitative agreement with recent experimental data for such systems.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Nematic liquid crystal boojums with handles on colloidal handlebodies

Qingkun Liu; Bohdan Senyuk; M. Tasinkevych; Ivan I. Smalyukh

Topological defects that form on surfaces of ordered media, dubbed boojums, are ubiquitous in superfluids, liquid crystals (LCs), Langmuir monolayers, and Bose–Einstein condensates. They determine supercurrents in superfluids, impinge on electrooptical switching in polymer-dispersed LCs, and mediate chemical response at nematic-isotropic fluid interfaces, but the role of surface topology in the appearance, stability, and core structure of these defects remains poorly understood. Here, we demonstrate robust generation of boojums by controlling surface topology of colloidal particles that impose tangential boundary conditions for the alignment of LC molecules. To do this, we design handlebody-shaped polymer particles with different genus g. When introduced into a nematic LC, these particles distort the nematic molecular alignment field while obeying topological constraints and induce at least 2g − 2 boojums that allow for topological charge conservation. We characterize 3D textures of boojums using polarized nonlinear optical imaging of molecular alignment and explain our findings by invoking symmetry considerations and numerical modeling of experiment-matching director fields, order parameter variations, and nontrivial handle-shaped core structure of defects. Finally, we discuss how this interplay between the topologies of colloidal surfaces and boojums may lead to controlled self-assembly of colloidal particles in nematic and paranematic hosts, which, in turn, may enable reconfigurable topological composites.


New Journal of Physics | 2012

Liquid crystal boojum-colloids

M. Tasinkevych; Nuno Silvestre; M. M. Telo da Gama

Colloidal particles dispersed in a liquid crystal (LC) lead to distortions of the director field. The distortions are responsible for long-range effective colloidal interactions whose asymptotic behaviour is well understood. The short-distance behaviour depends on the structure and dynamics of the topological defects nucleated near the colloidal particles and a full nonlinear theory is required to describe it. Spherical colloidal particles with strong planar degenerate anchoring nucleate a pair of antipodal surface topological defects, known as boojums. We use the Landau–de Gennes theory to resolve the mesoscopic structure of the boojum cores and to determine the pairwise colloidal interactions. We compare the results in three (3D) and two (2D) spatial dimensions for spherical and disc-like colloidal particles, respectively. The corresponding free energy functionals are minimized numerically using finite elements with adaptive meshes. Boojums are always point-like in 2D, but acquire a rather complex structure in 3D, which depends on the combination of the anchoring potential, the radius of the colloid, the temperature and the LC elastic anisotropy. We identify three types of defect cores in 3D that we call single, double and split-core boojums, and investigate the associated structural transitions. The split-core structure is favoured by low temperatures, strong anchoring and small twist to splay or bend ratios. For sufficiently strong anchoring potentials characterized by a well-defined uniaxial minimum, the split-core boojums are the only stable configuration. In the presence of two colloidal particles, we observe substantial re-arrangements of the inner defects in both 3D and 2D. These re-arrangements lead to qualitative changes in the force-distance profile when compared to the asymptotic quadrupole–quadrupole interaction. In line with the experimental results, the presence of the defects prevents coalescence of the colloidal particles in 2D, but not in 3D systems.


Physical Review E | 2003

Forces between elongated particles in a nematic colloid

Denis Andrienko; M. Tasinkevych; Pedro Manuel Alves Patrício; Michael P. Allen; M. M. T. da Gama

Using molecular dynamics simulations we study the interactions between elongated colloidal particles (length to breath ratio >>1) in a nematic host. The simulation results are compared to the results of a Landau-de Gennes elastic free energy. We find that depletion forces dominate for the sizes of the colloidal particles studied. The tangential component of the force, however, allows us to resolve the elastic contribution to the total interaction. We find that this contribution differs from the quadrupolar interaction predicted at large separations. The difference is due to the presence of nonlinear effects, namely, the change in the positions and structure of the defects and their annihilation at small separations.


European Physical Journal E | 2007

Complete wetting of pits and grooves

M. Tasinkevych; S. Dietrich

Abstract.For one-component volatile fluids governed by dispersion forces an effective interface Hamiltonian, derived from a microscopic density functional theory, is used to study complete wetting of geometrically structured substrates. Also the long range of substrate potentials is explicitly taken into account. Four types of geometrical patterns are considered: i) one-dimensional periodic arrays of rectangular or parabolic grooves and ii) two-dimensional lattices of cylindrical or parabolic pits. We present numerical evidence that at the centers of the cavity regions the thicknesses of the adsorbed films obey precisely the same geometrical covariance relation, which has been recently reported for complete cone and wedge filling. However, this covariance does not hold for the laterally averaged wetting film thicknesses. For sufficiently deep cavities with vertical walls and close to liquid-gas phase coexistence in the bulk, the film thicknesses exhibit an effective planar scaling regime, which as a function of undersaturation is characterized by a power law with the common critical exponent -1/3 as for a flat substrate, but with the amplitude depending on the geometrical features.


Condensed Matter Physics | 2010

Colloidal particles in liquid crystal films and at interfaces

M. Tasinkevych; Denis Andrienko

This mini-review discusses the recent contribution of theoretical and computational physics as well as experimental efforts to the understanding of the behavior of colloidal particles in confined geometries and at liquid crystalline interfaces. Theoretical approaches used to study trapping, longand short-range interactions, and assembly of solid particles and liquid inclusions are outlined. As an example, an interaction of a spherical colloidal particle with a nematic-isotropic interface and a pair interaction potential between two colloids at this interface are obtained by minimizing the Landau-de Gennes free energy functional using the finite-element method with adaptive meshes.

Collaboration


Dive into the M. Tasinkevych's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan I. Smalyukh

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nuno Silvestre

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Checco

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bohdan Senyuk

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. M. Ocko

Brookhaven National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge