Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Tchernycheva is active.

Publication


Featured researches published by M. Tchernycheva.


Nano Letters | 2011

M-Plane Core-Shell InGaN/GaN Multiple-Quantum-Wells on GaN Wires for Electroluminescent Devices

Robert Koester; Jun-Seok Hwang; Damien Salomon; Xiaojun Chen; Catherine Bougerol; Jean-Paul Barnes; Daniel Le Si Dang; L. Rigutti; Andres De Luna Bugallo; G. Jacopin; M. Tchernycheva; Christophe Durand; J. Eymery

Nonpolar InGaN/GaN multiple quantum wells (MQWs) grown on the {11-00} sidewalls of c-axis GaN wires have been grown by organometallic vapor phase epitaxy on c-sapphire substrates. The structural properties of single wires are studied in detail by scanning transmission electron microscopy and in a more original way by secondary ion mass spectroscopy to quantify defects, thickness (1-8 nm) and In-composition in the wells (∼16%). The core-shell MQW light emission characteristics (390-420 nm at 5 K) were investigated by cathodo- and photoluminescence demonstrating the absence of the quantum Stark effect as expected due to the nonpolar orientation. Finally, these radial nonpolar quantum wells were used in room-temperature single-wire electroluminescent devices emitting at 392 nm by exploiting sidewall emission.


Journal of Applied Physics | 2008

GaN/AlN short-period superlattices for intersubband optoelectronics: A systematic study of their epitaxial growth, design, and performance

P. K. Kandaswamy; F. Guillot; E. Bellet-Amalric; E. Monroy; L. Nevou; M. Tchernycheva; A. Michon; F. H. Julien; Esther Baumann; Fabrizio R. Giorgetta; Daniel Hofstetter; T. Remmele; M. Albrecht; Stefan Birner; Le Si Dang

We have studied the effect of growth and design parameters on the performance of Si-doped GaN/AlN multiquantum-well (MQW) structures for intersubband optoelectronics in the near infrared. The samples under study display infrared absorption in the 1.3–1.9 μm wavelength range, originating from the photoexcitation of electrons from the first to the second electronic level in the QWs. A commonly observed feature is the presence of multiple peaks in both intersubband absorption and interband emission spectra, which are attributed to monolayer thickness fluctuations in the quantum wells. These thickness fluctuations are induced by dislocations and eventually by cracks or metal accumulation during growth. The best optical performance is attained in samples synthesized with a moderate Ga excess during the growth of both the GaN QWs and the AlN barriers without growth interruptions. The optical properties are degraded at high growth temperatures (>720 °C) due to the thermal activation of the AlN etching of GaN. Fr...


Nano Letters | 2011

Nanometer Scale Spectral Imaging of Quantum Emitters in Nanowires and Its Correlation to Their Atomically Resolved Structure

Luiz Fernando Zagonel; Stefano Mazzucco; Marcel Tencé; Katia March; Romain Bernard; Benoît Laslier; G. Jacopin; M. Tchernycheva; L. Rigutti; F. H. Julien; R. Songmuang; Mathieu Kociak

We report the spectral imaging in the UV to visible range with nanometer scale resolution of closely packed GaN/AlN quantum disks in individual nanowires using an improved custom-made cathodoluminescence system. We demonstrate the possibility to measure full spectral features of individual quantum emitters as small as 1 nm and separated from each other by only a few nanometers and the ability to correlate their optical properties to their size, measured with atomic resolution. The direct correlation between the quantum disk size and emission wavelength provides evidence of the quantum confined Stark effect leading to an emission below the bulk GaN band gap for disks thicker than 2.6 nm. With the help of simulations, we show that the internal electric field in the studied quantum disks is smaller than what is expected in the quantum well case. We show evidence of a clear dispersion of the emission wavelengths of different quantum disks of identical size but different positions along the wire. This dispersion is systematically correlated to a change of the diameter of the AlN shell coating the wire and is thus attributed to the related strain variations along the wire. The present work opens the way both to fundamental studies of quantum confinement in closely packed quantum emitters and to characterizations of optoelectronic devices presenting carrier localization on the nanometer scale.


Nano Letters | 2010

Ultraviolet Photodetector Based on GaN/AlN Quantum Disks in a Single Nanowire

L. Rigutti; M. Tchernycheva; A. De Luna Bugallo; G. Jacopin; F. H. Julien; Luiz Fernando Zagonel; Katia March; Odile Stéphan; Mathieu Kociak; R. Songmuang

We report the demonstration of single-nanowire photodetectors relying on carrier generation in GaN/AlN QDiscs. Two nanowire samples containing QDiscs of different thicknesses are analyzed and compared to a reference binary n-i-n GaN nanowire sample. The responsivity of a single wire QDisc detector is as high as 2 x 10(3) A/W at lambda = 300 nm at room temperature. We show that the insertion of an axial heterostructure drastically reduces the dark current with respect to the binary nanowires and enhances the photosensitivity factor (i.e., the ratio between the photocurrent and the dark current) up to 5 x 10(2) for an incoming light intensity of 5 mW/cm(2). Photocurrent spectroscopy allows identification of the spectral contribution related to carriers generated within large QDiscs, which lies below the GaN band gap due to the quantum confined Stark effect.


Journal of Applied Physics | 2007

Au-assisted molecular beam epitaxy of InAs nanowires: Growth and theoretical analysis

M. Tchernycheva; L. Travers; G. Patriarche; Frank Glas; J. C. Harmand; G. E. Cirlin; V. G. Dubrovskii

The Au-assisted molecular beam epitaxial growth of InAs nanowires is discussed. In situ reflection high-energy electron diffraction observations of phase transitions of the catalyst particles indicate that they can be liquid below the eutectic point of the Au-In alloy. The temperature range where the catalyst can be liquid covers the range where we observed nanowire formation (380–430 °C). The variation of nanowire growth rate with temperature is investigated. Pure axial nanowire growth is observed at high temperature while mixed axial/lateral growth occurs at low temperature. The change of the InAs nanowire shape with growth duration is studied. It is shown that significant lateral growth of the lower part of the nanowire starts when its length exceeds a critical value, so that their shape presents a steplike profile along their axis. A theoretical model is proposed to explain the nanowire morphology as a result of the axial and lateral contributions of the nanowire growth.


Nano Letters | 2014

InGaN/GaN Core–Shell Single Nanowire Light Emitting Diodes with Graphene-Based P-Contact

M. Tchernycheva; Pierre Lavenus; Hezhi Zhang; A. V. Babichev; G. Jacopin; M. Shahmohammadi; F. H. Julien; R. Ciechonski; G. Vescovi; O. Kryliouk

We report on the demonstration of MOVPE-grown single nanowire InGaN/GaN core-shell light emitting diodes (LEDs) with a transparent graphene contact for hole injection. The electrical homogeneity of the graphene-contacted LED has been assessed by electron beam induced current microscopy. By comparing graphene-contacted and metal-contacted nanowire LEDs, we show that the contact layout determines the electroluminescence spectrum. The electroluminescence changes color from green to blue with increasing injection current. High-resolution cathodoluminescence on cleaved nanowires allows the location with high precision of the origin of different emitted wavelengths and demonstrates that the blue peak originates from the emission of the radial quantum well on the m-planes, whereas the green peak arises from the In-rich region at the junction between the m-planes and the semipolar planes. The spectral behavior of the electroluminescence is understood by modeling the current distribution within the nanowire.


Applied Physics Letters | 2008

Near infrared quantum cascade detector in GaN∕AlGaN∕AlN heterostructures

A. Vardi; G. Bahir; F. Guillot; Catherine Bougerol; E. Monroy; S. E. Schacham; M. Tchernycheva; F. H. Julien

A quantum cascade detector in the GaN/AlGaN/AlN material system was implemented. The design takes advantage of the large internal field existing in the nitrides in order to generate the essential saw tooth energy level structure. The device operates in the near IR spectral range with a room temperature responsivity at λ=1.7μm of 10mA∕W (1000V∕W) at zero bias. The spectroscopic measurements are in good agreement with simulations.


Journal of Applied Physics | 2006

Si-doped GaN∕AlN quantum dot superlattices for optoelectronics at telecommunication wavelengths

F. Guillot; E. Bellet-Amalric; E. Monroy; M. Tchernycheva; L. Nevou; L. Doyennette; F. H. Julien; Le Si Dang; T. Remmele; M. Albrecht; T. Shibata; Mitsuhiro Tanaka

We report on the controlled growth by molecular beam epitaxy of 20-period Si-doped GaN∕AlN quantum dot (QD) superlattices, in order to tailor their intraband absorption within the 1.3–1.55μm telecommunication spectral range. The QD size can be tuned by modifying the amount of GaN in the QDs, the growth temperature, or the growth interruption time (Ostwald ripening). By adjusting the growth conditions, QDs with height (diameter) within the range of 1–1.5nm (10–40nm), and density between 1011 and 1012cm−2 can be synthesized, fully strained on the AlN pseudosubstrate. To populate the first electronic level, silicon can be incorporated into the QDs without significant perturbation of the QD morphology. All the samples exhibit strong p-polarized intraband absorption at room temperature. The broadening of the absorption peak remains below 150meV and can be as small as ∼80meV. This absorption line is attributed to transition from the s ground level of the QD to the first excited level along the growth axis, pz. ...


Nano Letters | 2014

Integrated Photonic Platform Based on InGaN/GaN Nanowire Emitters and Detectors

M. Tchernycheva; Agnes Messanvi; A. De Luna Bugallo; G. Jacopin; Pierre Lavenus; L. Rigutti; Hezhi Zhang; Y. Halioua; F. H. Julien; J. Eymery; Christophe Durand

We report the fabrication of a photonic platform consisting of single wire light-emitting diodes (LED) and photodetectors optically coupled by waveguides. MOVPE-grown (metal-organic vapor-phase epitaxy) InGaN/GaN p-n junction core-shell nanowires have been used for device fabrication. To achieve a good spectral matching between the emission wavelength and the detection range, different active regions containing either five narrow InGaN/GaN quantum wells or one wide InGaN segment were employed for the LED and the detector, respectively. The communication wavelength is ∼400 nm. The devices are realized by means of electron beam lithography on Si/SiO2 templates and connected by ∼100 μm long nonrectilinear SiN waveguides. The photodetector current trace shows signal variation correlated with the LED on/off switching with a fast transition time below 0.5 s.


Applied Physics Letters | 2005

Midinfrared intersubband absorption in lattice-matched AlInN∕GaN multiple quantum wells

S. Nicolay; J.-F. Carlin; E. Feltin; R. Butté; Mauro Mosca; N. Grandjean; M. Ilegems; M. Tchernycheva; L. Nevou; F. H. Julien

We report the observation of midinfrared intersubband (ISB) absorption in nearly lattice-matched AlInN∕GaN multiple-quantum-wells. A clear absorption peak is observed around 3μm involving transitions from the conduction band ground state to the first excited state. In addition to ISB absorption, photoluminescence experiments were carried out on lattice- matched AlInN∕GaN single quantum wells in order to determine the spontaneous polarization discontinuity between GaN and Al0.82In0.18N compounds. The experimental value is in good agreement with theoretical predictions. Our results demonstrate that the AlInN∕GaN system is very promising to achieve crack-free and low dislocation density structures dedicated to intersubband devices in the 2–4μm wavelength range.

Collaboration


Dive into the M. Tchernycheva's collaboration.

Top Co-Authors

Avatar

F. H. Julien

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

E. Monroy

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

F. H. Julien

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

L. Nevou

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar

F. Guillot

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

L. Rigutti

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

J. C. Harmand

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Christophe Durand

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

E. Warde

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar

J. Eymery

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge