Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Teresa Carvajal is active.

Publication


Featured researches published by M. Teresa Carvajal.


Journal of Colloid and Interface Science | 2009

Interactions between bovine serum albumin and alginate: An evaluation of alginate as protein carrier

Yinyan Zhao; Fuyue Li; M. Teresa Carvajal; Michael T. Harris

The intermolecular interactions between the model protein, bovine serum albumin (BSA) and a biocompatible polysaccharide, sodium alginate, have been investigated. Both the native BSA and the heat pre-denatured BSA were utilized to study, in parallel, the effect of protein conformational change during the protein-alginate complex formation. In this work, a comparison was performed between the native BSA and the heat-denatured BSA incubated sodium alginate mixtures by using zeta potential analyzer, dynamic light scattering (DLS) and turbidimetric analysis of the systems in combination with protein conformational tools, Fourier transform infrared spectroscopy (FT-IR) and size exclusion chromatography (SE-HPLC). The experimental results demonstrate that the intermolecular chain associations were formed between alginate chains and protein molecules in either the native form or the heat pre-denatured form, mainly driven by the electrostatic interactions between the oppositely charged amino acids and the anionic polysaccharide macromolecules. However, the majority of BSA was recovered from the dissociation of protein-alginate complexes and maintained its secondary structure and conformational property. Therefore, alginate is promising as a bioactive compound carrier.


Pharmaceutical Research | 2006

Additive-Induced Metastable Single Crystal of Mefenamic Acid

Eun Hee Lee; Stephen R. Byrn; M. Teresa Carvajal

PurposeTo utilize additives to develop a strategy and a method to grow single crystals that allow structure determination of a metastable form of a drug.Materials and MethodsThe metastable form of mefenamic acid (MFA) was grown in the presence of various amounts of the structurally similar additive flufenamic acid (FFA) in ethanol. Single crystal X-ray analysis was performed on the single crystals of MFA II that were formed. The solubility of MFA in the presence of FFA was measured to elucidate the mechanism of MFA II formation.ResultsA supersaturated solution of MFA in ethanol produced the metastable form using FFA as an additive. Ethanol–water mixtures and toluene were also used to investigate the relationships between form produced and solvent since these two solvent systems do not produce MFA II.ConclusionsAdditives can be used to obtain the metastable form of pharmaceutical compounds, and the relationships between molecules and solvent as well as between host and guest molecules are critical to obtaining the desired form.


Molecular Pharmaceutics | 2011

Improvement of the dissolution rate of poorly soluble drugs by solid crystal suspensions.

Markus Thommes; David R. Ely; M. Teresa Carvajal; Rodolfo Pinal

We present a novel extrusion based approach where the dissolution rate of poorly soluble drugs (griseofulvin, phenytoin and spironolactone) is significantly accelerated. The drug and highly soluble mannitol are coprocessed in a hot melt extrusion operation. The obtained product is an intimate mixture of the crystalline drug and crystalline excipient, with up to 50% (w/w) drug load. The in vitro drug release from the obtained solid crystalline suspensions is over 2 orders of magnitude faster than that of the pure drug. Since the resulting product is crystalline, the accelerated dissolution rate does not bear the physical stability concerns inherent to amorphous formulations. This approach is useful in situations where the drug is not a good glass former or in cases where it is difficult to stabilize the amorphous drug. Being thermodynamically stable, the dissolution profile and the solid state properties of the product are maintained after storage at 40 °C, 75% RH for at least 90 days.


Journal of Pharmaceutical Sciences | 2011

Assessment of Milling-Induced Disorder of Two Pharmaceutical Compounds

Andrew Otte; M. Teresa Carvajal

The goal of this study was to provide a better framework for understanding the bulk and surface disorder in milled crystalline materials. The surface and bulk properties of two model compounds, ketoconazole and griseofulvin, were characterized by inverse gas chromatography as a function of cryomilling time. Cryomilling was used to decrease the effect of temperature-induced changes, which commonly occur during milling. A reduction in crystallinity was observed for both compounds by powder X-ray diffraction and differential scanning calorimetry (DSC). Particle size analysis revealed a continued mode of attrition for griseofulvin, whereas attrition followed by growth was observed for ketoconazole. An increase in surface energy for both compounds was noticed upon initial milling, followed by a decrease as milling time continued. A determination and comparison of the surface phase transformations using chromatographic methods and DSC was carried out. Both ketoconazole and griseofulvin showed an earlier phase transformation relative to DSC. It is proposed that an intermediate metastable state for griseofulvin and a change in the surface structure of ketoconazole is the consequence of the cryomilling process.


Aaps Pharmscitech | 2009

Elucidating Raw Material Variability—Importance of Surface Properties and Functionality in Pharmaceutical Powders

Sai Prasanth Chamarthy; Rodolfo Pinal; M. Teresa Carvajal

The purpose of this study is to illustrate, with a controlled example, the influence of raw material variability on the excipient’s functionality during processing. Soluble starch was used as model raw material to investigate the effect of variability on its compaction properties. Soluble starch used in pharmaceutical applications has undergone a purification procedure including washing steps. In this study, a lot of commercially available starch was divided into two parts. One was left intact and the other was subjected to an extra washing step. The two resulting lots were subjected to a series of physical characterization tests typical of those used to qualify raw materials. The two resulting lots gave virtually identical results from the tests. From the physical testing point of view, the two lots can be considered as two equivalent lots of the same excipient. However, when tested for their functionality when subjected to a compaction process, the two lots were found to be completely different. The compaction properties of the two lots were distinctly different under all environmental and processing conditions tested. From the functionality point of view, the two lots are two very different materials. The similar physical testing results but different functionality can be reconciled by considering the surface properties of the powders. It was found that the washing step significantly altered the surface energetic properties of the excipient. The washed lot consistently produced stronger compacts. These results are attributable to the measurably higher surface energy of induced by the additional washing step.


Drug Development and Industrial Pharmacy | 2008

Utility of Multivariate Analysis in Modeling the Effects of Raw Material Properties and Operating Parameters on Granule and Ribbon Properties Prepared in Roller Compaction

Josephine L. P. Soh; Feng Wang; Nathan Boersen; Rodolfo Pinal; Garnet E. Peck; M. Teresa Carvajal; James Cheney; Hedinn Valthorsson; Jim Pazdan

This article aimed to model the effects of raw material properties and roller compactor operating parameters (OPs) on the properties of roller compacted ribbons and granules with the aid of principal component analysis (PCA) and partial least squares (PLS) projection. A database of raw material properties was established through extensive physical and mechanical characterization of several microcrystalline cellulose (MCC) and lactose grades and their blends. A design of experiment (DoE) was used for ribbon production. PLS models constructed with only OP-modeled roller compaction (RC) responded poorly. Inclusion of raw material properties markedly improved the goodness of fit (R2 = .897) and model predictability (Q2 = 0.72).


International Journal of Pharmaceutics | 2009

Toward understanding the evolution of griseofulvin crystal structure to a mesophase after cryogenic milling.

Tao Feng; Simon Bates; M. Teresa Carvajal

The purpose of this research is to investigate the response of crystalline griseofulvin to mechanically induced stress through cryogenic milling. Crystalline griseofulvin was subjected to cryogenic milling for two different lengths of time. Following cryo-milling, the samples were immediately analyzed by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). The DSC thermograms of cryo-milled griseofulvin showed a complex exothermic event at around 65 degrees C for the 30min cryo-milled sample and around 75 degrees C for the 60min cryo-milled sample. A glass transition event was not observed for the cryo-milled samples. This is in direct contrast to the X-ray amorphous griseofulvin sample prepared through the quench melt method The XRPD patterns of cryo-milled griseofulvin show a loss of the crystalline Bragg peaks and a corresponding increase in diffuse scattering (halos). The disordered griseofulvin material produced through cryo-milling appears X-ray amorphous, yet different from the amorphous phase produced using the quench melt method. Both X-ray amorphous materials have distinctive DSC thermograms and X-ray powder patterns. These findings suggest that the evolution of the griseofulvin crystal structure during cryo-milling is not simply a crystal-to-amorphous transition but a transition to an intermediate mesophase.


Journal of Pharmaceutical Innovation | 2007

Importance of Raw Material Attributes for Modeling Ribbon and Granule Properties in Roller Compaction: Multivariate Analysis on Roll Gap and NIR Spectral Slope as Process Critical Control Parameters

Josephine L. P. Soh; Nathan Boersen; M. Teresa Carvajal; Kenneth R. Morris; Garnet E. Peck; Rodolfo Pinal

This work is an extension of the earlier work from this laboratory aimed at identifying raw material properties critical to the modeling of granule and ribbon properties as part of the optimization of roller (RC) compaction processes. The utility of roll gap (RG) and near-infrared (NIR) signal, specifically, the spectral slope, as process critical control parameters (PCCPs) was also evaluated. Raw material tabletability, particle size, size distribution span, and tapped density were found to be most important factors for building robust predictive models. RG and NIR spectral slope in combination with RC operating parameters yielded models with good predictability for RC responses. Our results support the suitability of RG and NIR spectral slope as PCCPs in roller compaction, specifically, through ribbon density monitoring.


Aaps Pharmscitech | 2008

Investigation of the Variability of NIR In-line Monitoring of Roller Compaction Process by Using Fast Fourier Transform (FFT) Analysis

Tao Feng; Feng Wang; Rodolfo Pinal; Carl Wassgren; M. Teresa Carvajal

The purpose of this research was to investigate the variability of the roller compaction process while monitoring in-line with near-infrared (NIR) spectroscopy. In this paper, a pragmatic method in determining this variability of in-line NIR monitoring roller compaction process was developed and the variability limits were established. Fast Fourier Transform (FFT) analysis was used to study the source of the systematic fluctuations of the NIR spectra. An off-line variability analysis method was developed as well to simulate the in-line monitoring process in order to determine the variability limits of the roller compaction process. For this study, a binary formulation was prepared composed of acetaminophen and microcrystalline cellulose. Different roller compaction parameters such as roll speed and feeding rates were investigated to understand the variability of the process. The best-fit line slope of NIR spectra exhibited frequency dependence only on the roll speed regardless of the feeding rates. The eccentricity of the rolling motion of rollers was identified as the major source of variability and correlated with the fluctuations of the slopes of NIR spectra. The off-line static and dynamic analyses of the compacts defined two different variability of the roller compaction; the variability limits were established. These findings were proved critical in the optimization of the experimental setup of the roller compaction process by minimizing the variability of NIR in-line monitoring.


CrystEngComm | 2012

Milling induces disorder in crystalline griseofulvin and order in its amorphous counterpart

Andrew Otte; Yan Zhang; M. Teresa Carvajal; Rodolfo Pinal

This study investigates two apparently similar thermal signatures, shaped as bimodal exotherms, observed when either the crystalline or the amorphous from of the drug are subjected to milling. Crystalline griseofulvin was cryomilled and the (quenched-melt) amorphous form was subjected to either cryomilling or grinding. The thermal and surface properties of the resulting samples were analyzed using differential scanning calorimetry (DSC) and surface energy analysis. After milling, both the crystalline and the amorphous material revealed visually similar bimodal exothermic events when the heating rate was 20 °C min−1. Under different heating rates, the pair of DSC peaks for the bimodal exotherm of each material behaved entirely different from each other. The two peaks of the bimodal event, as well as the glass transition, can be kinetically resolved for the ground amorphous form using standard mode DSC. In contrast, similar analysis was unable to resolve the bimodal exotherm or a glass transition in the case of the cryomilled crystals. Furthermore, cryomilled crystals do not exhibit a glass transition even when analyzed using modulated DSC. Synchrotron sourced X-ray analysis revealed that grinding the amorphous material results in the nucleation and growth of the crystalline form. Milling thus induces disorder in the crystals of griseofulvin but induces order in the amorphous form of the drug. The surface of the two milled systems consistently exhibited different energetics under a wide range of relative humidity conditions. These findings suggest that cryomilling induces both bulk and surface disorder, specifically, a certain level of dislocations on the crystal. In contrast, grinding the amorphous material lowers the activation energy for crystal formation, inducing nuclei formation and growth throughout the amorphous matrix.

Collaboration


Dive into the M. Teresa Carvajal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohamad G. Abiad

American University of Beirut

View shared research outputs
Researchain Logo
Decentralizing Knowledge