M. Tomás
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Tomás.
Plant Science | 2012
Jaume Flexas; Margaret M. Barbour; Oliver Brendel; Hernán M. Cabrera; Marc Carriquí; Antonio Diaz-Espejo; Cyril Douthe; Erwin Dreyer; Juan Pedro Ferrio; Jorge Gago; Alexander Gallé; Jeroni Galmés; Naomi Kodama; Hipólito Medrano; Ülo Niinemets; José Javier Peguero-Pina; Alicia Pou; Miquel Ribas-Carbo; M. Tomás; Tiina Tosens; Charles R. Warren
Mesophyll diffusion conductance to CO(2) is a key photosynthetic trait that has been studied intensively in the past years. The intention of the present review is to update knowledge of g(m), and highlight the important unknown and controversial aspects that require future work. The photosynthetic limitation imposed by mesophyll conductance is large, and under certain conditions can be the most significant photosynthetic limitation. New evidence shows that anatomical traits, such as cell wall thickness and chloroplast distribution are amongst the stronger determinants of mesophyll conductance, although rapid variations in response to environmental changes might be regulated by other factors such as aquaporin conductance. Gaps in knowledge that should be research priorities for the near future include: how different is mesophyll conductance among phylogenetically distant groups and how has it evolved? Can mesophyll conductance be uncoupled from regulation of the water path? What are the main drivers of mesophyll conductance? The need for mechanistic and phenomenological models of mesophyll conductance and its incorporation in process-based photosynthesis models is also highlighted.
Journal of Experimental Botany | 2009
Jaume Flexas; Matilde Barón; Josefina Bota; Jean-Marc Ducruet; Alexander Gallé; Jeroni Galmés; Miguel Jiménez; Alicia Pou; Miquel Ribas-Carbo; Carlota Sajnani; M. Tomás; Hipólito Medrano
The hybrid Richter-110 (Vitis berlandierixVitis rupestris) has the reputation of being a genotype strongly adapted to drought. A study was performed with plants of R-110 subjected to sustained water-withholding to induce acclimation to two different levels of water stress, followed by rewatering to induce recovery. The goal was to analyse how photosynthesis is regulated during acclimation to water stress and recovery. In particular, the regulation of stomatal conductance (g(s)), mesophyll conductance to CO(2) (g(m)), leaf photochemistry (chlorophyll fluorescence and thermoluminescence), and biochemistry (V(c,max)) were assessed. During water stress, g(s) declined to 0.1 and less than 0.05 mol CO(2) m(-2) s(-1) in moderately and severely water-stressed plants, respectively, and was kept quite constant during an acclimation period of 1-week. Leaf photochemistry proved to be very resistant to the applied water-stress conditions. By contrast, g(m) and V(c,max) were affected by water stress, but they were not kept constant during the acclimation period. g(m) was initially unaffected by water stress, and V(c,max) even increased above control values. However, after several days of acclimation to water stress, both parameters declined below (g(m)) or at (V(c,max)) control values. For the latter two parameters there seemed to be an interaction between water stress and cumulative irradiance, since both recovered to control values after several cloudy days despite water stress. A photosynthesis limitation analysis revealed that diffusional limitations and not biochemical limitations accounted for the observed decline in photosynthesis during water stress and slow recovery after rewatering, both in moderately and severely stressed plants. However, the relative contribution of stomatal (SL) and mesophyll conductance (MCL) limitations changes during acclimation to water stress, from predominant SL early during water stress to similar SL and MCL after acclimation. Finally, photosynthesis recovery after rewatering was mostly limited by SL, since stomatal closure recovered much more slowly than g(m).
Journal of Experimental Botany | 2013
M. Tomás; Jaume Flexas; Lucian Copolovici; Jeroni Galmés; Lea Hallik; Hipólito Medrano; Miquel Ribas-Carbo; Tiina Tosens; Vivian Vislap; Ülo Niinemets
Foliage photosynthetic and structural traits were studied in 15 species with a wide range of foliage anatomies to gain insight into the importance of key anatomical traits in the limitation of diffusion of CO2 from substomatal cavities to chloroplasts. The relative importance of different anatomical traits in constraining CO2 diffusion was evaluated using a quantitative model. Mesophyll conductance (g m) was most strongly correlated with chloroplast exposed surface to leaf area ratio (S c/S) and cell wall thickness (T cw), but, depending on foliage structure, the overall importance of g m in constraining photosynthesis and the importance of different anatomical traits in the restriction of CO2 diffusion varied. In species with mesophytic leaves, membrane permeabilities and cytosol and stromal conductance dominated the variation in g m. However, in species with sclerophytic leaves, g m was mostly limited by T cw. These results demonstrate the major role of anatomy in constraining mesophyll diffusion conductance and, consequently, in determining the variability in photosynthetic capacity among species.
Photosynthesis Research | 2013
Jaume Flexas; Ülo Niinemets; Alexander Gallé; Margaret M. Barbour; Mauro Centritto; Antonio Diaz-Espejo; Cyril Douthe; Jeroni Galmés; Miquel Ribas-Carbo; Pedro L. Rodriguez; Francesc Rosselló; Raju Y. Soolanayakanahally; M. Tomás; Ian J. Wright; Graham D. Farquhar; Hipólito Medrano
A key objective for sustainable agriculture and forestry is to breed plants with both high carbon gain and water-use efficiency (WUE). At the level of leaf physiology, this implies increasing net photosynthesis (AN) relative to stomatal conductance (gs). Here, we review evidence for CO2 diffusional constraints on photosynthesis and WUE. Analyzing past observations for an extensive pool of crop and wild plant species that vary widely in mesophyll conductance to CO2 (gm), gs, and foliage AN, it was shown that both gs and gm limit AN, although the relative importance of each of the two conductances depends on species and conditions. Based on Fick’s law of diffusion, intrinsic WUE (the ratio AN/gs) should correlate on the ratio gm/gs, and not gm itself. Such a correlation is indeed often observed in the data. However, since besides diffusion AN also depends on photosynthetic capacity (i.e., Vc,max), this relationship is not always sustained. It was shown that only in a very few cases, genotype selection has resulted in simultaneous increases of both AN and WUE. In fact, such a response has never been observed in genetically modified plants specifically engineered for either reduced gs or enhanced gm. Although increasing gm alone would result in increasing photosynthesis, and potentially increasing WUE, in practice, higher WUE seems to be only achieved when there are no parallel changes in gs. We conclude that for simultaneous improvement of AN and WUE, genetic manipulation of gm should avoid parallel changes in gs, and we suggest that the appropriate trait for selection for enhanced WUE is increased gm/gs.
Journal of Experimental Botany | 2009
Alexander Gallé; Igor Florez-Sarasa; M. Tomás; Alicia Pou; Hipólito Medrano; Miquel Ribas-Carbo; Jaume Flexas
While the responses of photosynthesis to water stress have been widely studied, acclimation to sustained water stress and recovery after re-watering is poorly understood. In particular, the factors limiting photosynthesis under these conditions, and their possible interactions with other environmental conditions, are unknown. To assess these issues, changes of photosynthetic CO(2) assimilation (A(N)) and its underlying limitations were followed during prolonged water stress and subsequent re-watering in tobacco (Nicotiana sylvestris) plants growing under three different climatic conditions: outdoors in summer, outdoors in spring, and indoors in a growth chamber. In particular, the regulation of stomatal conductance (g(s)), mesophyll conductance to CO(2) (g(m)), leaf photochemistry (chlorophyll fluorescence), and biochemistry (V(c,max)) were assessed. Leaf gas exchange and chlorophyll fluorescence data revealed that water stress induced a similar degree of stomatal closure and decreased A(N) under all three conditions, while V(c,max) was unaffected. However, the behaviour of g(m) differed depending on the climatic conditions. In outdoor plants, g(m) strongly declined with water stress, but it recovered rapidly (1-2 d) after re-watering in spring while it remained low many days after re-watering in summer. In indoor plants, g(m) initially declined with water stress, but then recovered to control values during the acclimation period. These differences were reflected in different velocities of recovery of A(N) after re-watering, being the slowest in outdoor summer plants and the fastest in indoor plants. It is suggested that these differences among the experiments are related to the prevailing climatic conditions, i.e. to the fact that stress factors other than water stress have been superimposed (e.g. excessive light and elevated temperature). In conclusion, besides g(s), g(m) contributes greatly to the limitation of photosynthesis during water stress and during recovery from water stress, but its role is strongly dependent on the impact of additional environmental factors.
Physiologia Plantarum | 2008
Alicia Pou; Jaume Flexas; Maria Mar Alsina; Josefina Bota; Cecilia Carámbula; Felicidad de Herralde; Jeroni Galmés; Claudio Lovisolo; Miguel Jiménez; Miquel Ribas-Carbo; Denis Rusjan; Francesca Secchi; M. Tomás; Zsolt Zsófi; Hipólito Medrano
The hybrid Richter-110 (Vitis berlandieri x Vitis rupestris) (R-110) has the reputation of being a genotype strongly adapted to drought. A study was performed with plants of R-110 subjected to water withholding followed by re-watering. The goal was to analyze how stomatal conductance (g(s)) is regulated with respect to different physiological variables under water stress and recovery, as well as how water stress affects adjustments of water use efficiency (WUE) at the leaf level. Water stress induced a substantial stomatal closure and an increase in WUE, which persisted many days after re-watering. The g(s) during water stress was mainly related to the content of ABA in the xylem and partly related to plant hydraulic conductivity but not to leaf water potential. By contrast, low g(s) during re-watering did not correlate with ABA contents and was only related to a sustained decreased hydraulic conductivity. In addition to a complex physiological regulation of stomatal closure, g(s) and rate of transpiration (E) were strongly affected by leaf-to-air vapor pressure deficit (VPD) in a way dependent of the treatment. Interestingly, E increased with increasing VPD in control plants, but decreased with increasing VPD in severely stressed plants. All together, the fine stomatal regulation in R-110 resulted in very high WUE at the leaf level. This genotype is revealed to be very interesting for further studies on the physiological mechanisms leading to regulation of stomatal responsiveness and WUE in response to drought.
Journal of Experimental Botany | 2009
A. Perez-Martin; Jaume Flexas; Miquel Ribas-Carbo; Josefina Bota; M. Tomás; J. M. Infante; Antonio Diaz-Espejo
The present work aims to study the interactive effect of drought stress and high vapour pressure deficit (VPD) on leaf gas exchange, and especially on mesophyll conductance to CO(2) (g(m)), in two woody species of great agronomical importance in the Mediterranean basin: Vitis vinifera L. cv. Tempranillo and Olea europaea L. cv. Manzanilla. Plants were grown in specially designed outdoor chambers with ambient and below ambient VPD, under both well-irrigated and drought conditions. g(m) was estimated by the variable J method from simultaneous measurements of gas exchange and fluorescence. In both species, the response to soil water deficit was larger in g(s) than in g(m), and more important than the response to VPD. Olea europaea was apparently more sensitive to VPD, so that plants growing in more humid chambers showed higher g(s) and g(m). In V. vinifera, in contrast, soil water deficit dominated the response of g(s) and g(m). Consequently, changes in g(m)/g(s) were more related to VPD in O. europaea and to soil water deficit in V. vinifera. Most of the limitations of photosynthesis were diffusional and especially due to stomatal closure. No biochemical limitation was detected. The results showed that structural parameters played an important role in determining g(m) during the acclimation process. Although the relationship between leaf mass per unit area (M(A)) with g(m) was scattered, it imposed a limitation to the maximum g(m) achievable, with higher values of M(A) in O. europaea at lower g(m) values. M(A) decreased under water stress in O. europaea but it increased in V. vinifera. This resulted in a negative relationship between M(A) and the CO(2) draw-down between substomatal cavities and chloroplasts in O. europaea, while being positive in V. vinifera.
Plant and Soil | 2012
Alicia Pou; Hipólito Medrano; M. Tomás; Sebastià Martorell; Miquel Ribas-Carbo; Jaume Flexas
AimsThree grapevine varieties original from different climates: Grenache, from Mediterranean origin; Syrah, from mesic origin and Chardonnay, from the humid zone of Burgundy (France) were used to study differential physiological responses to water deficit and sub-sequent recovery after re-watering. Moreover, the effect of the environmental growing conditions on water use efficiency (WUE) was also studied.MethodsChanges of the lamina hydraulic conductance (Klamina), transpiration, photosynthetic CO2 assimilation (AN), stomatal conductance (gs), mesophyll conductance to CO2 (gm), chlorophyll fluorescence, and their interactions with other environmental conditions were followed during prolonged water stress and subsequent re-watering in Chardonnay, Grenache and Syrah.ResultsGrenache confirmed its reputation as isohydric and Chardonnay as anisohydric, but Syrah, a variety often considered as anisohydric, showed near-isohydric behaviour. Chardonnay displayed higher hydraulic conductance during both irrigation and water stress and a faster recovery after water stress as compared to the two isohydric-behaving varieties. Chardonnay attained lower decreases in stomatal conductance in response to water stress by delaying its adjustment of the lamina hydraulic conductance (Klamina), which in turn resulted in the maintenance of higher photosynthesis and photosynthetic capacity, favoring faster recovery upon re-watering.The results do not support the common assumption that isohydric behaviour results in a better performance under water stress conditions. Indeed, under moderate water stress, Chardonnay showed some advantages over the two varieties displaying near-isohydric behaviour.ConclusionsIntegrated over a period including water stress imposition, acclimation and recovery Chardonnay displayed higher CO2 assimilation than Grenache and Syrah, which implies a higher yield potential under these conditions.
Plant Cell and Environment | 2016
Jaume Flexas; Antonio Diaz-Espejo; Miquel À. Conesa; Rafael E. Coopman; Cyril Douthe; Jorge Gago; Alexander Gallé; Jeroni Galmés; Hipólito Medrano; Miquel Ribas-Carbo; M. Tomás; Uelo Niinemets
Water limitation is a major global constraint for plant productivity that is likely to be exacerbated by climate change. Hence, improving plant water use efficiency (WUE) has become a major goal for the near future. At the leaf level, WUE is the ratio between photosynthesis and transpiration. Maintaining high photosynthesis under water stress, while improving WUE requires either increasing mesophyll conductance (gm ) and/or improving the biochemical capacity for CO2 assimilation-in which Rubisco properties play a key role, especially in C3 plants at current atmospheric CO2 . The goals of the present analysis are: (1) to summarize the evidence that improving gm and/or Rubisco can result in increased WUE; (2) to review the degree of success of early attempts to genetically manipulate gm or Rubisco; (3) to analyse how gm , gsw and the Rubiscos maximum velocity (Vcmax ) co-vary across different plant species in well-watered and drought-stressed conditions; (4) to examine how these variations cause differences in WUE and what is the overall extent of variation in individual determinants of WUE; and finally, (5) to use simulation analysis to provide a theoretical framework for the possible control of WUE by gm and Rubisco catalytic constants vis-à-vis gsw under water limitations.
New Phytologist | 2016
Tiina Tosens; Keisuke Nishida; Jorge Gago; Rafael E. Coopman; Hernán M. Cabrera; Marc Carriquí; Lauri Laanisto; Loreto V. Morales; Miquel Nadal; Roke Rojas; Eero Talts; M. Tomás; Yuko T. Hanba; Ülo Niinemets; Jaume Flexas
Ferns and fern allies have low photosynthetic rates compared with seed plants. Their photosynthesis is thought to be limited principally by physical CO2 diffusion from the atmosphere to chloroplasts. The aim of this study was to understand the reasons for low photosynthesis in species of ferns and fern allies (Lycopodiopsida and Polypodiopsida). We performed a comprehensive assessment of the foliar gas-exchange and mesophyll structural traits involved in photosynthetic function for 35 species of ferns and fern allies. Additionally, the leaf economics spectrum (the interrelationships between photosynthetic capacity and leaf/frond traits such as leaf dry mass per unit area or nitrogen content) was tested. Low mesophyll conductance to CO2 was the main cause for low photosynthesis in ferns and fern allies, which, in turn, was associated with thick cell walls and reduced chloroplast distribution towards intercellular mesophyll air spaces. Generally, the leaf economics spectrum in ferns follows a trend similar to that in seed plants. Nevertheless, ferns and allies had less nitrogen per unit DW than seed plants (i.e. the same slope but a different intercept) and lower photosynthesis rates per leaf mass area and per unit of nitrogen.