Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Tulinius is active.

Publication


Featured researches published by M. Tulinius.


Annals of Neurology | 2001

The incidence of mitochondrial encephalomyopathies in childhood: Clinical features and morphological, biochemical, and DNA abnormalities

Niklas Darin; Anders Oldfors; Ali-Reza Moslemi; Elisabeth Holme; M. Tulinius

In this study we present incidence, point prevalence, and mortality figures of mitochondrial encephalomyopathies in a population‐based study of children from western Sweden. Through the screening of registers and review of medical records, we identified 32 patients under 16 years of age from the study population who were diagnosed between January 1, 1984, and December 31, 1998. The incidence of mitochondrial encephalomyopathies in preschool children (<6 years of age) was 1 out of 11,000. The preschool incidence of Leighs syndrome was 1 out of 32,000, and the preschool incidences of both Alpers syndrome and infantile mitochondrial myopathy with cytochrome C oxidase deficiency were 1 out of 51,000. The point prevalence (January 1, 1999) of mitochondrial encephalomyopathies in children under 16 years of age was 1 out of 21,000. The median survival for patients with infantile onset was until 12 years of age. We identified 4 cases with mitochondrial DNA point mutations, 2 cases with mitochondrial DNA deletions, and 2 cases with nuclear mutations in the SURF1 gene. We conclude that mitochondrial encephalomyopathies are relatively common neurometabolic disorders in childhood. Ann Neurol 2001;49:377–383


European Heart Journal | 2003

Cardiomyopathy in children with mitochondrial disease: Clinical course and cardiological findings

Daniel Holmgren; H Wåhlander; B.O Eriksson; Anders Oldfors; Elisabeth Holme; M. Tulinius

AIMSnTo determine the frequency of cardiomyopathy in children with mitochondrial disease and describe their clinical course, prognosis and cardiological manifestations.nnnMETHODS AND RESULTSnOf 301 children with CNS and neuromuscular disease referred to our institution in 1984 to 1999, 101 had mitochondrial disease. Seventeen patients had cardiomyopathy, diagnosed by echo-Doppler investigations, all of the hypertrophic, non-obstructive type. The onset of symptomatic mitochondrial disease ranged from birth to 10 years of age. Eight children had cytochrome-c oxidase deficiency, while the remaining nine had various defects. Cardiomyopathy was diagnosed from birth to 27 years. Left ventricular posterior wall and septal thickness were both increased: z-scores +4.6+/-2.6 and +4.3+/-1.6 (mean+/-SD), respectively. The left ventricular diastolic diameter z-score, +1.3+/-3.4, and fractional shortening, 24+/-13%, displayed marked variations. Nine patients developed heart failure. Eleven patients with cardiomyopathy died, including all eight with cytochrome-c oxidase deficiency, and one patient underwent a heart transplantation. Mortality in children with mitochondrial disease was higher in those with cardiomyopathy (71%) than those without (26%) (P<0.001).nnnCONCLUSIONSnIn children with mitochondrial disease, cardiomyopathy was common (17%) and was associated with increased mortality. The prognosis for children with cytochrome-c oxidase deficiency and cardiomyopathy appeared to be particularly unfavorable.


Neuromuscular Disorders | 2007

Low bone mineral density and decreased bone turnover in Duchenne muscular dystrophy

Ann-Charlott Söderpalm; Per Magnusson; Anne-Christine Åhlander; Jon Karlsson; Anna-Karin Kroksmark; M. Tulinius; Diana Swolin-Eide

This cross-sectional study examined bone mineral density, bone turnover, body composition and calciotropic hormones in 24 boys with Duchenne muscular dystrophy (DMD) (2.3-19.7 years), most of whom were being treated with prednisolone, and 24 age-matched healthy boys. Our study demonstrated lower bone mineral density in the DMD group for total body, spine, hip, heel and forearm measurements. These differences between DMD patients and controls increased with increasing age. Biochemical markers of both bone formation and resorption revealed reduced bone turnover in DMD patients. The fracture rate was not higher in DMD patients. The DMD group had low vitamin D levels but high leptin levels in comparison with the control group. Muscle strength correlated with bone mineral density assessed at the hip and heel in the DMD group. Interventions that increase bone formation should be considered, as DMD patients have reduced bone turnover in addition to their low bone mineral density.


Journal of Neuropathology and Experimental Neurology | 2006

POLG1 Mutations Associated With Progressive Encephalopathy in Childhood

Gittan Kollberg; Ali-Reza Moslemi; Niklas Darin; Inger Nennesmo; Ingibjörg Bjarnadottir; Paul Uvebrant; Elisabeth Holme; Atle Melberg; M. Tulinius; Anders Oldfors

Abstract We have identified compound heterozygous missense mutations in POLG1, encoding the mitochondrial DNA polymerase gamma (Pol &ggr;), in 7 children with progressive encephalopathy from 5 unrelated families. The clinical features in 6 of the children included psychomotor regression, refractory seizures, stroke-like episodes, hepatopathy, and ataxia compatible with Alpers-Huttenlocher syndrome. Three families harbored a previously reported A467T substitution, which was found in compound with the earlier described G848S or the W748S substitution or a novel R574W substitution. Two families harbored the W748S change in compound with either of 2 novel mutations predicted to give an R232H or M1163R substitution. Muscle morphology showed mitochondrial myopathy with cytochrome c oxidase (COX)-deficient fibers in 4 patients. mtDNA analyses in muscle tissue revealed mtDNA depletion in 3 of the children and mtDNA deletions in the 2 sibling pairs. Neuropathologic investigation in 3 children revealed widespread cortical degeneration with gliosis and subcortical neuronal loss, especially in the thalamus, whereas there were only subcortical neurodegenerative findings in another child. The results support the concept that deletions as well as depletion of mtDNA are involved in the pathogenesis of Alpers-Huttenlocher syndrome and add 3 new POLG1 mutations associated with an early-onset neurodegenerative disease.


Brain | 2009

Clinical manifestation and a new ISCU mutation in iron–sulphur cluster deficiency myopathy

Gittan Kollberg; M. Tulinius; Atle Melberg; Niklas Darin; Oluf Andersen; Daniel Holmgren; Anders Oldfors; Elisabeth Holme

Myopathy with deficiency of succinate dehydrogenase and aconitase is a recessively inherited disorder characterized by childhood-onset early fatigue, dyspnoea and palpitations on trivial exercise. The disease is non-progressive, but life-threatening episodes of widespread weakness, severe metabolic acidosis and rhabdomyolysis may occur. The disease has so far only been identified in northern Sweden. The clinical, histochemical and biochemical phenotype is very homogenous and the patients are homozygous for a deep intronic IVS5 + 382G>C splicing affecting mutation in ISCU, which encodes the differently spliced cytosolic and mitochondrial iron-sulphur cluster assembly protein IscU. Iron-sulphur cluster containing proteins are essential for iron homeostasis and respiratory chain function, with IscU being among the most conserved proteins in evolution. We identified a shared homozygous segment of only 405,000 base pair with the deep intronic mutation in eight patients with a phenotype consistent with the original description of the disease. Two other patients, two brothers, had an identical biochemical and histochemical phenotype which is probably pathognomonic for muscle iron-sulphur cluster deficiency, but they presented with a disease where the clinical phenotype was characterized by early onset of a slowly progressive severe muscle weakness, severe exercise intolerance and cardiomyopathy. The brothers were compound heterozygous for the deep intronic mutation and had a c.149 G>A missense mutation in exon 3 changing a completely conserved glycine residue to a glutamate. The missense mutation was inherited from their mother who was of Finnish descent. The intronic mutation affects mRNA splicing and results in inclusion of pseudoexons in most transcripts in muscle. The pseudoexon inclusion results in a change in the reading frame and appearance of a premature stop codon. In western blot analysis of protein extracts from fibroblasts, there was no pronounced reduction of IscU in any of the patients, but the analysis revealed that the species corresponding to mitochondrial IscU migrates slower than a species present only in whole cells. In protein extracted from isolated skeletal muscle mitochondria the western blot analysis revealed a severe deficiency of IscU in the homozygous patients and appearance of a faint new fraction that could represent a truncated protein. There was only a slight reduction of mitochondrial IscU in the compound heterozygotes, despite their severe phenotype, indicating that the IscU expressed in these patients is non-functional.


Neuromuscular Disorders | 2009

A novel homozygous RRM2B missense mutation in association with severe mtDNA depletion

Gittan Kollberg; Niklas Darin; Karin Benan; Ali-Reza Moslemi; Sigurd Lindal; M. Tulinius; Anders Oldfors; Elisabeth Holme

This report describes two brothers, both deceased in infancy, with severe depletion of mitochondrial DNA (mtDNA) in muscle tissue. Both had feeding difficulties, failure to thrive, severe muscular hypotonia and lactic acidosis. One of the boys developed a renal proximal tubulopathy. A novel homozygous c.686 G-->T missense mutation in the RRM2B gene, encoding the p53-inducible ribonucleotide reductase subunit (p53R2), was identified. This is the third report on mutations in RRM2B associated with severe mtDNA depletion, which further highlights the importance of de novo synthesis of deoxyribonucleotides (dNTPs) for mtDNA maintenance.


The Journal of Physiology | 2007

Effects of a R133W β‐tropomyosin mutation on regulation of muscle contraction in single human muscle fibres

Julien Ochala; Mingxin Li; Homa Tajsharghi; Eva Kimber; M. Tulinius; Anders Oldfors; Lars Larsson

A novel R133W β‐tropomyosin (β‐Tm) mutation, associated with muscle weakness and distal limb deformities, has recently been identified in a woman and her daughter. The muscle weakness was not accompanied by progressive muscle wasting or histopathological abnormalities in tibialis anterior muscle biopsy specimens. The aim of the present study was to explore the mechanisms underlying the impaired muscle function in patients with the β‐Tm mutation. Maximum force normalized to fibre cross‐sectional area (specific force, SF), maximum velocity of unloaded shortening (V0), apparent rate constant of force redevelopment (ktr) and force–pCa relationship were evaluated in single chemically skinned muscle fibres from the two patients carrying the β‐Tm mutation and from healthy control subjects. Significant differences in regulation of muscle contraction were observed in the type I fibres: a lower SF (P < 0.05) and ktr (P < 0.01), and a faster V0 (P < 0.05). The force–pCa relationship did not differ between patient and control fibres, indicating an unaltered Ca2+ activation of contractile proteins. Collectively, these results indicate a slower cross‐bridge attachment rate and a faster detachment rate caused by the R133W β‐Tm mutation. It is suggested that the R133W β‐Tm mutation induces alteration in myosin–actin kinetics causing a reduced number of myosin molecules in the strong actin‐binding state, resulting in overall muscle weakness in the absence of muscle wasting.


Developmental Medicine & Child Neurology | 2005

Myotonic dystrophy: muscle involvement in relation to disease type and size of expanded CTG-repeat sequence

Anna-Karin Kroksmark; Anne-Berit Ekström; Eva Björck; M. Tulinius

This study aimed to: classify a cohort of children and adolescents with myotonic dystrophy (dystrophia myotonica: DM) into congenital and childhood onset forms; estimate CTG expansion size; and quantify muscle strength, contractures, and motor function in children with DM and compare results with those of controls. Participants were clinically examined, medical records were reviewed, and isometric muscle strength, contractures, and motor function were measured. Participants were: 42 children with DM (18 females, 24 males; mean age 8y 9mo [SD 4y 7mo], range 10mo to 17y) and 42 age- and sex-matched, healthy controls. Children with DM were divided into three groups: severe congenital (n=13), mild congenital (n=15), and childhood (n=14). Children with childhood DM were significantly weaker than controls (wrist and ankle dorsiflexors [p=0.0044, p=0.0044 respectively]; hip abductors and flexors [p=0.0464, p=0.0217]; and knee flexors and extensors: [p=0.0382, p=0.0033]). Children with mild congenital DM were significantly weaker than controls in all assessed muscle groups. Contractures and skeletal deformities were more frequent at time of investigation than at birth, suggesting that foot and spine deformities in particular increase over time. Motor function score was significantly lower for children with DM than for controls. Children with severe congenital DM had the lowest motor function, with correlation between motor function and size of CTG repeat (p=-0.743). Children found jumping, heel standing, and head lifting the most difficult items to perform but few had difficulty walking, running, or stair climbing. DM in children is a heterogeneous disorder with a wide spectrum of muscle involvement, and owing to increased risk of contractures and skeletal deformities, regular follow-ups are recommended.


The Lancet | 2017

Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial

Craig M. McDonald; Craig Campbell; Ricardo Erazo Torricelli; R. Finkel; Kevin M. Flanigan; Nathalie Goemans; Peter T. Heydemann; Anna Kaminska; Janbernd Kirschner; Francesco Muntoni; Andrés Nascimento Osorio; Ulrike Schara; Thomas Sejersen; Perry B. Shieh; H. Lee Sweeney; Haluk Topaloglu; M. Tulinius; Juan J. Vílchez; Thomas Voit; Brenda Wong; Gary L. Elfring; Hans Kroger; Xiaohui Luo; Joseph McIntosh; Tuyen Ong; Peter Riebling; Marcio Souza; Robert Spiegel; Stuart W. Peltz; Eugenio Mercuri

BACKGROUNDnDuchenne muscular dystrophy (DMD) is a severe, progressive, and rare neuromuscular, X-linked recessive disease. Dystrophin deficiency is the underlying cause of disease; therefore, mutation-specific therapies aimed at restoring dystrophin protein production are being explored. We aimed to assess the efficacy and safety of ataluren in ambulatory boys with nonsense mutation DMD.nnnMETHODSnWe did this multicentre, randomised, double-blind, placebo-controlled, phase 3 trial at 54 sites in 18 countries located in North America, Europe, the Asia-Pacific region, and Latin America. Boys aged 7-16 years with nonsense mutation DMD and a baseline 6-minute walk distance (6MWD) of 150 m or more and 80% or less of the predicted normal value for age and height were randomly assigned (1:1), via permuted block randomisation (block size of four) using an interactive voice-response or web-response system, to receive ataluren orally three times daily (40 mg/kg per day) or matching placebo. Randomisation was stratified by age (<9 years vs ≥9 years), duration of previous corticosteroid use (6 months to <12 months vs ≥12 months), and baseline 6MWD (<350 m vs ≥350 m). Patients, parents and caregivers, investigational site personnel, PTC Therapeutics employees, and all other study personnel were masked to group allocation until after database lock. The primary endpoint was change in 6MWD from baseline to week 48. We additionally did a prespecified subgroup analysis of the primary endpoint, based on baseline 6MWD, which is reflective of anticipated rates of disease progression over 1 year. The primary analysis was by intention to treat. This study is registered with ClinicalTrials.gov, number NCT01826487.nnnFINDINGSnBetween March 26, 2013, and Aug 26, 2014, we randomly assigned 230 patients to receive ataluren (n=115) or placebo (n=115); 228 patients comprised the intention-to-treat population. The least-squares mean change in 6MWD from baseline to week 48 was -47·7 m (SE 9·3) for ataluren-treated patients and -60·7 m (9·3) for placebo-treated patients (difference 13·0 m [SE 10·4], 95% CI -7·4 to 33·4; p=0·213). The least-squares mean change for ataluren versus placebo in the prespecified subgroups was -7·7 m (SE 24·1, 95% CI -54·9 to 39·5; p=0·749) in the group with a 6MWD of less than 300 m, 42·9 m (15·9, 11·8-74·0; p=0·007) in the group with a 6MWD of 300 m or more to less than 400 m, and -9·5 m (17·2, -43·2 to 24·2; p=0·580) in the group with a 6MWD of 400 m or more. Ataluren was generally well tolerated and most treatment-emergent adverse events were mild to moderate in severity. Eight (3%) patients (n=4 per group) reported serious adverse events; all except one event in the placebo group (abnormal hepatic function deemed possibly related to treatment) were deemed unrelated to treatment.nnnINTERPRETATIONnChange in 6MWD did not differ significantly between patients in the ataluren group and those in the placebo group, neither in the intention-to-treat population nor in the prespecified subgroups with a baseline 6MWD of less than 300 m or 400 m or more. However, we recorded a significant effect of ataluren in the prespecified subgroup of patients with a baseline 6MWD of 300 m or more to less than 400 m. Baseline 6MWD values within this range were associated with a more predictable rate of decline over 1 year; this finding has implications for the design of future DMD trials with the 6-minute walk test as the endpoint.nnnFUNDINGnPTC Therapeutics.


Neuromuscular Disorders | 2005

Novel mutations in the thymidine kinase 2 gene (TK2) associated with fatal mitochondrial myopathy and mitochondrial DNA depletion

M. Tulinius; Ali-Reza Moslemi; Niklas Darin; Elisabeth Holme; Anders Oldfors

We describe the clinical, morphological and genetic findings in two siblings with the myopathic form of mitochondrial DNA depletion syndrome (MIM 251880). Sequencing of the thymidine kinase-2 gene revealed two heterozygous missense mutations, a C-->T mutation at nucleotide 191 resulting in a change of threonine to methionine at residue 64 in exon 3, and a C-->T mutation at nucleotide 547 resulting in an arginine to tryptophan amino acid change at residue 183 in exon 8. Both mutations changed highly conserved residues in the gene and neither one has been described previously. This report extends the phenotypic expression of mutations in the thymidine kinase-2 gene.

Collaboration


Dive into the M. Tulinius's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders Oldfors

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Holme

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Niklas Darin

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Nathalie Goemans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann-Charlott Söderpalm

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon Karlsson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge