Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M.U. Latasa is active.

Publication


Featured researches published by M.U. Latasa.


Annals of the New York Academy of Sciences | 2009

Inflammation and Liver Cancer

Carmen Berasain; J. Castillo; M.J. Perugorria; M.U. Latasa; Jesús Prieto; Matías A. Avila

A connection between inflammation and cancer has been long suspected. Epidemiological studies have established that many tumors occur in association with chronic infectious diseases, and it is also known that persistent inflammation in the absence of infections increases the risk and accelerates the development of cancer. One clear example of inflammation‐related cancer is hepatocellular carcinoma (HCC). HCC is a type tumor that slowly unfolds on a background of chronic inflammation mainly triggered by exposure to infectious agents (hepatotropic viruses) or to toxic compounds (ethanol). The molecular links that connect inflammation and cancer are not completely known, but evidences gathered over the past few years are beginning to define the precise mechanisms. In this article we review the most compelling evidences on the role of transcription factors such as NF‐κB and STAT3, cytokines like IL‐6 and IL‐1α, ligands of the EGF receptor and other inflammatory mediators in cancer development, with special emphasis in HCC. The molecular dissection of the pathways connecting the inflammatory reaction and neoplasia will pave the way for better therapies to treat cancers.


Gut | 2013

Identification of fibroblast growth factor 15 as a novel mediator of liver regeneration and its application in the prevention of post-resection liver failure in mice

Iker Uriarte; M.G. Fernandez-Barrena; Maria J. Monte; M.U. Latasa; Haisul C.Y. Chang; Simone Carotti; Umberto Vespasiani-Gentilucci; Sergio Morini; Eva Vicente; Axel R. Concepcion; Juan F. Medina; Jose J.G. Marin; Carmen Berasain; Jesús Prieto; Matías A. Avila

Objective Cholestasis is associated with increased liver injury and morbidity after partial hepatectomy (PH), yet bile acids (BAs) are emerging as important mediators of liver regeneration. Fibroblast growth factor 15 (Fgf15, human FGF19) is a BA-induced ileum-derived enterokine that governs BA metabolism. We evaluated the relevance of Fgf15 in the preservation of BA homeostasis after PH and its potential role in the regenerative process. Design Liver regeneration after PH was studied in Fgf15 −/− and Fgf15 +/+ mice. The effects of the BA sequestrant cholestyramine and adenovirally delivered Fgf15 were examined in this model. The role of Fgf15 in BA-induced liver growth was tested in Fgf15 −/− mice upon cholic acid (CA) feeding. The direct mitogenic effect of Fgf15 was evaluated in cultured mouse hepatocytes and cholangiocytes. Results Fgf15 −/− mice showed marked liver injury and mortality after PH accompanied by persistently elevated intrahepatic BA levels. Cholestyramine feeding and adenovirally delivered Fgf15 reduced BA levels and significantly prevented this lethal outcome. Fgf15 also reduced mortality after extensive hepatectomy in Fgf15+/+ animals. Liver growth elicited by CA feeding was significantly diminished in Fgf15 −/− mice. Proliferation of hepatocytes and cholangiocytes was also noticeably reduced in CA-fed Fgf15 −/− mice. Fgf15 induced intracellular signalling and proliferation of cultured hepatocytes and cholangiocytes. Conclusions Fgf15 is necessary to maintain BA homeostasis and prevent liver injury during liver regeneration. Moreover, Fgf15 is an essential mediator of the liver growth-promoting effects of BA. Preoperative administration of this enterokine to patients undergoing liver resection might be useful to reduce damage and foster regeneration.


Experimental Biology and Medicine | 2009

The Epidermal Growth Factor Receptor: A Link Between Inflammation and Liver Cancer

Carmen Berasain; M.J. Perugorria; M.U. Latasa; Josefa Castillo; Saioa Goñi; Monica Santamaria; Jesús Prieto; Matías A. Avila

Epidemiological studies have established that many tumours occur in association with persistent inflammation. One clear example of inflammation-related cancer is hepatocellular carcinoma (HCC). HCC slowly unfolds on a background of chronic inflammation triggered by exposure to infectious agents (hepatotropic viruses), toxic compounds (ethanol), or metabolic impairment. The molecular links that connect inflammation and cancer are not completely known, but evidence gathered over the past few years is beginning to define the precise mechanisms. A central role for cytokines such as interleukin-6 (IL-6) and IL-1 (α and β) in liver cancer has been established in experimental models. Besides these inflammatory mediators, mounting evidence points to the dysregulation of specific growth and survival-related pathways in HCC development. Among them is the pathway governed by the epidermal growth factor receptor (EGFR), which can be bound and activated by a broad family of ligands. Of special relevance is the fact that the EGFR engages in extensive crosstalk with other signaling pathways, serving as a “signaling hub” for an increasing list of growth factors, cytokines, and inflammatory mediators. In this review, we summarize the most recent evidences supporting a role for the EGFR system in inflammation-related cell signaling, with special emphasis in liver inflammation and HCC. The molecular dissection of the pathways connecting the inflammatory reaction and neoplasia will facilitate the development of novel and more effective antitumor strategies.


Gastroenterology | 2009

Amphiregulin Induces the Alternative Splicing of p73 Into Its Oncogenic Isoform ΔEx2p73 in Human Hepatocellular Tumors

J. Castillo; Saioa Goñi; M.U. Latasa; M.J. Perugorria; Alicia Calvo; Jordi Muntané; Paulette Bioulac–Sage; Charles Balabaud; Jesús Prieto; Matías A. Avila; Carmen Berasain

BACKGROUND & AIMS Inactivation of the product of the tumor suppressor gene TP73 does not usually occur by mutation but rather through expression of truncated isoforms that have dominant-negative effects on p73 and p53. The truncated oncogenic isoform DeltaEx2p73 is expressed in hepatocellular carcinomas (HCC) and is produced through the alternative splicing of p73 pre-messenger RNA (pre-mRNA); however, the underlying mechanisms regulating this process are unknown. METHODS We used human normal and diseased liver tissue samples, as well as human HCC cell lines, to examine the association between activation of epidermal growth factor receptor (EGFR) by its ligand amphiregulin (AR) and the alternative splicing of p73 pre-mRNA into the tumorigenic isoform DeltaEx2p73, via c-Jun N-terminal-kinase-1-mediated signaling. RESULTS DeltaEx2p73 was expressed in a subset of premalignant cirrhotic livers and in otherwise healthy livers that harbored a primary tumor, as well as in HCC tissues. DeltaEx2p73 expression was correlated with that of the EGFR ligand AR, which was previously shown to have a role in hepatocarcinogenesis. Autocrine activation of the EGFR by AR triggered c-Jun N-terminal kinase-1 activity and inhibited the expression of the splicing regulator Slu7, leading to the accumulation of DeltaEx2p73 transcripts in HCC cells. CONCLUSIONS This study provided a mechanism for the generation of protumorigenic DeltaEx2p73 during liver tumorigenesis, via activation of EGFR signaling by AR and c-Jun N-terminal kinase-1 activity, leading to inhibition of the splicing regulator Slu7.


Cancers | 2011

Epidermal Growth Factor Receptor (EGFR) Crosstalks in Liver Cancer

Carmen Berasain; M.U. Latasa; Raquel Urtasun; Saioa Goñi; Maria Elizalde; Oihane García-Irigoyen; María Azcona; Jesús Prieto; Matías A. Avila

Hepatocarcinogenesis is a complex multistep process in which many different molecular pathways have been implicated. Hepatocellular carcinoma (HCC) is refractory to conventional chemotherapeutic agents, and the new targeted therapies are meeting with limited success. Interreceptor crosstalk and the positive feedback between different signaling systems are emerging as mechanisms of targeted therapy resistance. The identification of such interactions is therefore of particular relevance to improve therapeutic efficacy. Among the different signaling pathways activated in hepatocarcinogenesis the epidermal growth factor receptor (EGFR) system plays a prominent role, being recognized as a “signaling hub” where different extracellular growth and survival signals converge. EGFR can be transactivated in response to multiple heterologous ligands through the physical interaction with multiple receptors, the activity of intracellular kinases or the shedding of EGFR-ligands. In this article we review the crosstalk between the EGFR and other signaling pathways that could be relevant to liver cancer development and treatment.


Journal of Hepatology | 2012

Lack of Abcc3 expression impairs bile-acid induced liver growth and delays hepatic regeneration after partial hepatectomy in mice.

M.G. Fernandez-Barrena; Maria J. Monte; M.U. Latasa; I. Uriarte; Eva Vicente; Haisul C.Y. Chang; Carlos M. Rodríguez-Ortigosa; Ronald P. J. Oude Elferink; Carmen Berasain; Jose J.G. Marin; Jesús Prieto; Matías A. Avila

BACKGROUND & AIMS Bile acids (BA) are increasingly recognized as important modulators of liver regeneration. Increased enterohepatic BA flux has been proposed to generate specific signals that activate hepatocyte proliferation after partial hepatectomy (PH). We have investigated the role of the BA membrane transporter Mrp3 (Abcc3), which is expressed in the liver and gut, in the hepatic growth response elicited by BA and in liver regeneration after PH. METHODS Liver growth and regeneration, and the expression of growth-related genes, were studied in Mrp3(+/+) and Mrp3(-/-) mice fed a cholic acid (CA) supplemented diet and after 2/3 PH. Activation of the BA receptor FXR was measured in mice after in vivo transduction of the liver with a FXR-Luciferase reporter plasmid. BA levels were measured in portal serum and liver tissue by high performance liquid chromatography-tandem mass spectrometry. RESULTS Liver growth elicited by CA feeding was significantly reduced in Mrp3(-/-) mice. These animals showed reduced FXR activation in the liver after CA administration and decreased portal serum levels of BA. Liver regeneration after PH was significantly delayed in Mrp3-deficient mice. Proliferation-related gene expression and peak DNA synthesis in Mrp3(-/-) mice occurred later than in wild types, coinciding with a retarded elevation in intra-hepatic BA levels. CONCLUSIONS Lack of Abcc3 expression markedly impairs liver growth in response to BA and after PH. Our data suggest that Mrp3 plays a non-redundant role in the regulation of BA flux during liver regeneration.


Liver International | 2014

Matrix metalloproteinase‐10 expression is induced during hepatic injury and plays a fundamental role in liver tissue repair

Oihane García-Irigoyen; Simone Carotti; M.U. Latasa; Iker Uriarte; M.G. Fernandez-Barrena; Maria Elizalde; Raquel Urtasun; Umberto Vespasiani-Gentilucci; Sergio Morini; Jesus M. Banales; William C. Parks; José Antonio Piqueras Rodríguez; Josune Orbe; Jesús Prieto; José A. Páramo; Carmen Berasain; Matías A. Avila

Upon tissue injury, the liver mounts a potent reparative and regenerative response. A role for proteases, including serine and matrix metalloproteinases (MMPs), in this process is increasingly recognized. We have evaluated the expression and function of MMP10 (stromelysin‐2) in liver wound healing and regeneration.


Modern Pathology | 2012

Toll-like receptor-4 expression by hepatic progenitor cells and biliary epithelial cells in HCV-related chronic liver disease

Umberto Vespasiani-Gentilucci; Simone Carotti; Andrea Onetti-Muda; Giuseppe Perrone; Stefano Ginanni-Corradini; M.U. Latasa; Matías A. Avila; Guido Carpino; Antonio Picardi; Sergio Morini

Notwithstanding numerous evidences implicating toll-like receptor-4 (TLR4) in the pathogenesis of chronic hepatitis C virus (HCV) infection, the localization and level of TLR4 expression in the liver of patients with hepatitis C have never been investigated. We aimed to evaluate, by means of immunohistochemistry and real-time PCR (rt-PCR), hepatic TLR4 expression in patients with chronic HCV infection. Fifty patients who had undergone liver biopsy and 11 patients transplanted because of chronic HCV infection, and 12 controls free of liver disease, were included in the study. Each case was analyzed by immunohistochemistry for TLR4, α–smooth muscle actin and cytokeratin-7 (CK-7), and a subgroup of patients and all controls by rt-PCR for TLR4. Immunohistochemistry for α-smooth muscle actin was used to derive a score of activation of hepatic stellate cells and portal/septal myofibroblasts, while immunohistochemistry for CK-7 was used to evaluate and count hepatic progenitor cells, interlobular bile ducts and intermediate hepatocytes. In patients, the parenchymal elements responsible for the highest TLR4 level of expression were hepatic progenitor cells and biliary epithelial cells of interlobular bile ducts. Double-labeling experiments between anti-TLR4 and anti-CK7, anti-CD133, anti-CD44, anti-neural cell adhesion molecule, anti-epithelial cell adhesion molecule and anti-sex determining region Y-box 9, confirmed these findings. TLR4-positive hepatic progenitor cells and interlobular bile ducts were significantly correlated with the stage of liver disease (P<0.001), the grade of inflammation (P<0.001), and the activity of portal/septal myofibroblasts (P<0.001). rt-PCR study confirmed an increased TLR4 expression in the 26 patients analyzed with respect to controls (P<0.001). TLR4 expression positively correlated with fibrosis (P<0.05) and inflammation (P<0.05). The present results suggest that TLR4 expression by hepatic progenitor cells and biliary epithelial cells contributes to the progression of liver damage in the course of chronic HCV-related infection.


Hepatology | 2015

Matrix metalloproteinase 10 contributes to hepatocarcinogenesis in a novel crosstalk with the stromal derived factor 1/C‐X‐C chemokine receptor 4 axis

Oihane García-Irigoyen; M.U. Latasa; Simone Carotti; Iker Uriarte; Maria Elizalde; Raquel Urtasun; Umberto Vespasiani-Gentilucci; Sergio Morini; Patricia Benito; Jose M. Ladero; José Antonio Piqueras Rodríguez; Jesús Prieto; Josune Orbe; José A. Páramo; M.G. Fernandez-Barrena; Carmen Berasain; Matías A. Avila

Matrix metalloproteinases (MMPs) participate in tissue repair after acute injury, but also participate in cancer by promoting a protumorigenic microenvironment. Previously, we reported on a key role for MMP10 in mouse liver regeneration. Herein, we investigated MMP10 expression and function in human hepatocellular carcinoma (HCC) and diethylnitrosamine (DEN)‐induced mouse hepatocarcinogenesis. MMP10 was induced in human and murine HCC tissues and cells. MMP10‐deficient mice showed less HCC incidence, smaller histological lesions, reduced tumor vascularization, and less lung metastases. Importantly, expression of the protumorigenic, C‐X‐C chemokine receptor‐4 (CXCR4), was reduced in DEN‐induced MMP10‐deficient mice livers. Human HCC cells stably expressing MMP10 had increased CXCR4 expression and migratory capacity. Pharmacological inhibition of CXCR4 significantly reduced MMP10‐stimulated HCC cell migration. Furthermore, MMP10 expression in HCC cells was induced by hypoxia and the CXCR4 ligand, stromal‐derived factor‐1 (SDF1), through the extracellular signal‐regulated kinase 1/2 pathway, involving an activator protein 1 site in MMP10 gene promoter. Conclusion: MMP10 contributes to HCC development, participating in tumor angiogenesis, growth, and dissemination. We identified a new reciprocal crosstalk between MMP10 and the CXCR4/SDF1 axis contributing to HCC progression and metastasis. To our knowledge, this is the first report addressing the role of a MMP in hepatocarcinogenesis in the corresponding genetic mouse model. (Hepatology 2015;62:166‐178)


PLOS ONE | 2012

Regulation of amphiregulin gene expression by β-catenin signaling in human hepatocellular carcinoma cells: a novel crosstalk between FGF19 and the EGFR system.

M.U. Latasa; Fabiana Salis; Raquel Urtasun; Oihane García-Irigoyen; Maria Elizalde; Iker Uriarte; Monica Santamaria; Francesco Feo; Rosa Maria Pascale; Jesús Prieto; Carmen Berasain; Matías A. Avila

Hepatocellular carcinoma (HCC) is the most prevalent liver tumor and a deadly disease with limited therapeutic options. Dysregulation of cell signaling pathways is a common denominator in tumorigenesis, including hepatocarcinogenesis. The epidermal growth factor receptor (EGFR) signaling system is commonly activated in HCC, and is currently being evaluated as a therapeutic target in combination therapies. We and others have identified a central role for the EGFR ligand amphiregulin (AR) in the proliferation, survival and drug resistance of HCC cells. AR expression is frequently up-regulated in HCC tissues and cells through mechanisms not completely known. Here we identify the β-catenin signaling pathway as a novel mechanism leading to transcriptional activation of the AR gene in human HCC cells. Activation of β-catenin signaling, or expression of the T41A β-catenin active mutant, led to the induction of AR expression involving three specific β-catenin-Tcf responsive elements in its proximal promoter. We demonstrate that HCC cells expressing the T41A β-catenin active mutant show enhanced proliferation that is dependent in part on AR expression and EGFR signaling. We also demonstrate here a novel cross-talk of the EGFR system with fibroblast growth factor 19 (FGF19). FGF19 is a recently identified driver gene in hepatocarcinogenesis and an activator of β-catenin signaling in HCC and colon cancer cells. We show that FGF19 induced AR gene expression through the β-catenin pathway in human HCC cells. Importantly, AR up-regulation and EGFR signaling participated in the induction of cyclin D1 and cell proliferation elicited by FGF19. Finally, we demonstrate a positive correlation between FGF19 and AR expression in human HCC tissues, therefore supporting in clinical samples our experimental observations. These findings identify the AR/EGFR system as a key mediator of FGF19 responses in HCC cells involving β-catenin signaling, and suggest that combined targeting of FGF19 and AR/EGFR may enhance therapeutic efficacy.

Collaboration


Dive into the M.U. Latasa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergio Morini

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge