Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Vinichuk is active.

Publication


Featured researches published by M. Vinichuk.


Science of The Total Environment | 2010

Accumulation of potassium, rubidium and caesium (133Cs and 137Cs in various fractions of soil and fungi in a Swedish forest.

M. Vinichuk; A.F.S. Taylor; Klas Rosén; Karl-Johan Johanson

Radiocaesium ((137)Cs) was widely deposited over large areas of forest in Sweden as a result of the Chernobyl accident in 1986 and many people in Sweden eat wild fungi and game obtained from these contaminated forests. In terms of radioisotope accumulation in the food chain, it is well known that fungal sporocarps efficiently accumulate radiocaesium ((137)Cs), as well as the alkali metals potassium (K), rubidium (Rb) and caesium (Cs). The fungi then enhance uptake of these elements into host plants. This study compared the accumulation of these three alkali metals in bulk soil, rhizosphere, soil-root interface, fungal mycelium and sporocarps of mycorrhizal fungi in a Swedish forest. The soil-root interface was found to be distinctly enriched in K and Rb compared with the bulk soil. Potassium concentrations increased in the order: bulk soil<rhizosphere<fungal mycelium<soil-root interface<fungal sporocarps; and Rb concentration in the order: bulk soil<rhizosphere<soil-root interface<fungal mycelium<fungal sporocarps. Caesium was more or less evenly distributed within the bulk soil, rhizosphere and soil-root interface fractions, but was actively accumulated by fungi. Fungi showed a greater preference for Rb and K than Cs, so the uptake of (137)Cs could be prevented by providing additional Rb or K at contaminated sites. The levels of K, Rb, and Cs found in sporocarps were at least one order of magnitude higher than those in fungal mycelium. These results provide new insights into the use of transfer factors or concentration ratios. The final step, the transfer of alkali metals from fungal mycelium to sporocarps, raised some specific questions about possible mechanisms.


Journal of Environmental Radioactivity | 2012

Uptake and translocation of 109Cd and stable Cd within tobacco plants (Nicotiana sylvestris)

Klas Rosén; Jan Eriksson; M. Vinichuk

The availability, uptake, and translocation of recently added ((109)Cd) and naturally occurring (stable) soil Cd within tobacco plants were compared. (109)Cd was added to soil in two treatments, A (0.25 MBq kg soil(-1) DW) and B (eight-fold dose): stable Cd was measured in both treatments. Both the added and the stable Cd were higher in leaves and reproductive structures of the plant than in stalks and roots. The uptake of (109)Cd was 5.3 kBq plant(-1) for treatment A and 36.7 kBq plant(-1) for treatment B, and about 26 μg plant(-1) for stable Cd. Leaves of the tobacco plants accumulated 40-45% of the total (109)Cd and about 50% of total stable Cd taken up by the plant. Cadmium concentration in the plant was three times higher than in roots and two times higher than the concentration in soil: the concentration in roots was lower than in the soil.


Journal of Environmental Radioactivity | 2010

The distribution of 137Cs, K, Rb and Cs in plants in a Sphagnum-dominated peatland in eastern central Sweden

M. Vinichuk; Karl-Johan Johanson; Håkan Rydin; Klas Rosén

We record the distribution of (137)Cs, K, Rb and Cs within individual Sphagnum plants (down to 20cm depth) as well as (137)Cs in vascular plants growing on a peatland in eastern central Sweden. In Calluna vulgaris(137)Cs was mainly located within the green parts, whereas Andromeda polifolia, Eriophorum vaginatum and Vaccinium oxycoccos showed higher (137)Cs activity in roots. Carex rostrata and Menyanthes trifoliata showed variable distribution of (137)Cs within the plants. The patterns of (137)Cs activity concentration distribution as well as K, Rb and Cs concentrations within individual Sphagnum plants were rather similar and were usually highest in the capitula and/or in the subapical segments and lowest in the lower dead segments, which suggests continuous relocation of those elements to the actively growing apical part. The (137)Cs and K showed relatively weak correlations, especially in capitula and living green segments (0-10cm) of the plant (r=0.50). The strongest correlations were revealed between (137)Cs and Rb (r=0.89), and between (137)Cs and stable Cs (r=0.84). This suggests similarities between (137)Cs and Rb in uptake and relocation within the Sphagnum, but that (137)Cs differs from K.


Journal of Environmental Radioactivity | 2013

Inoculation with arbuscular mycorrhizae does not improve 137Cs uptake in crops grown in the Chernobyl region.

M. Vinichuk; A. Mårtensson; Klas Rosén

Methods for cleaning up radioactive contaminated soils are urgently needed. In this study we investigated whether the use of arbuscular mycorrhizal (AM) fungi can improve (137)Cs uptake by crops. Barley, cucumber, perennial ryegrass, and sunflower were inoculated with AM fungi and grown in low-level radionuclide contaminated soils in a field experiment 70 km southwest of Chernobyl, Ukraine, during two successive years (2009-2010). Roots of barley, cucumber and sunflower plants were slightly or moderately infected with AM fungus and root infection frequency was negatively or non-correlated with (137)Cs uptake by plants. Roots of ryegrass were moderately infected with AM fungus and infection frequency was moderately correlated with (137)Cs uptake by ryegrass. The application of AM fungi to soil in situ did not enhance radionuclide plant uptake or biomass. The responsiveness of host plants and AM fungus combination to (137)Cs uptake varied depending on the soil, although mycorrhization of soil in the field was conditional and did not facilitate the uptake of radiocesium. The total amount of (137)Cs uptake by plants growing on inoculated soil was equal to amounts in plant cultivated on non-inoculated soil. Thus, the use of AM fungi in situ for bioremediation of soil contaminated with a low concentration of (137)Cs could not be recommended.


Journal of Environmental Radioactivity | 2009

137Cs in a raised bog in central Sweden.

Klas Rosén; M. Vinichuk; Karl-Johan Johanson

The vertical distribution of (137)Cs activity in peat soil profiles and (137)Cs activity concentration in plants of various species was studied in samples collected at two sites on a raised bog in central Sweden. One site (open bog) was in an area with no trees and only a few sparsely growing plant species, while the other (low pine) was less than 100 m from the open bog site and had slowly growing Scots pine, a field layer dominated by some ericaceous plants and ground well-covered by plants. The plant samples were collected in 2004-2007 and were compared with samples collected in 1989 from the same open bog and low pine sites. Ground deposition of (137)Cs in 2005 was similar at both sites, 23,000 Bq m(-2). In the open bog peat profile it seems to be an upward transport of caesium since a clear peak of (137)Cs activity was found in the uppermost 1-4 cm of Sphagnum layers, whereas at the low pine site (137)Cs was mainly found in deeper (10-12 cm) layers. The migration rate was 0.57 cm yr(-1) at the open bog site and the migration centre of (137)Cs was at a depth of 10.7, while the rate at the low pine site was 0.78 cm yr(-1) and the migration centre was at 14.9 cm. Heather (Calluna vulgaris) was the plant species with the highest (137)Cs activity concentrations at both sites, 43.5 k Bq(-1) DM in 1989 decreasing to 20.4 in 2004-2007 on open bog and 22.3 k Bq kg(-1) DM in 1989 decreasing to 11.2 k Bq(-1) DM by the period 2004-2007 on the low pine site. (137)Cs transfer factors in plants varied between 0.88 and 1.35 on the open bog and between 0.48 and 0.69 m(2)kg(-1) DM at the low pine site.


Environmental Pollution | 2013

Accumulation of wet-deposited radiocaesium and radiostrontium by spring oilseed rape (Brássica napus L.) and spring wheat (Tríticum aestívum L.)

Stefan B. Bengtsson; Jan Eriksson; Annemieke I. Gärdenäs; M. Vinichuk; Klas Rosén

The accumulation of (134)Cs and (85)Sr within different parts of spring oilseed rape and spring wheat plants was investigated, with a particular focus on transfer to seeds after artificial wet deposition at different growth stages during a two-year field trial. In general, the accumulation of radionuclides in plant parts increased when deposition was closer to harvest. The seed of spring oilseed rape had lower concentrations of (85)Sr than spring wheat grain. The plants accumulated more (134)Cs than (85)Sr. We conclude that radionuclides can be transferred into human food chain at all growing stages, especially at the later stages. The variation in transfer factors during the investigation, and in comparison to previous results, implies the estimation of the risk for possible transfer of radionuclides to seeds in the event of future fallout during a growing season is still subject to considerable uncertainty.


Science of The Total Environment | 2014

Interception and retention of wet-deposited radiocaesium and radiostrontium on a ley mixture of grass and clover.

Stefan B. Bengtsson; Annemieke I. Gärdenäs; Jan Eriksson; M. Vinichuk; Klas Rosén

The aims of this study were to assess the potential radioactive contamination of fodder in the case of accidental radionuclide fallout, and to analyse the relationship between interception and retention of radionuclides as a function of biomass and Leaf Area Index (LAI). The interception and the retention of wet deposited (134)Cs and (85)Sr in ley (a mixture of grass and clover) were measured after artificial wet deposition in a field trial in Uppsala (eastern central Sweden). The field trial had a randomised block design with three replicates. (134)Cs and (85)Sr were deposited at six different growth stages during two growing seasons (2010 and 2011) using a rainfall simulator. The biomass was sampled in the center of each parcel 2 to 3h after deposition and at later growth stages (1 to 5) during the growing season. The above ground biomass and LAI were measured as well. The interception of radionuclides by the ley was largest at the late growth stages; the spike and tassel/flowering (code 5:6) in the 1(st) year, and at flowering/initial flowering (code 6:5) in the 2(nd) year. There was a correlation between radionuclide interception and above ground plant biomass, as well as with LAI, for both radionuclides in both years. The highest activity concentrations of both radionuclides were measured after deposition at the late growth stages and were found to be higher in the 2(nd) year. The weathering half-lives were shorter at the earlier growth stages than at the later growth stages for both radionuclides. For the magnitude of deposition chosen in our experiment, it can be concluded that the above ground biomass is a good predictor and the LAI a more uncertain predictor of the interception of radiocaesium and radiostrontium by ley grass and clover.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2013

Copper, zinc, and cadmium in various fractions of soil and fungi in a Swedish forest

M. Vinichuk

Ectomycorrhizal fungi profoundly affect forest ecosystems through mediating nutrient uptake and maintaining forest food webs. The accumulation of metals in each transfer step from bulk soil to fungal sporocarps is not well known. The accumulation of three metals copper (Cu), zinc (Zn) and cadmium (Cd) in bulk soil, rhizosphere, soil-root interface, fungal mycelium and sporocarps of mycorrhizal fungi in a Swedish forest were compared. Concentrations of all three metals increased in the order: bulk soil < soil-root interface (or rhizosphere) < fungal mycelium < fungal sporocarps. The uptake of Cu, Zn and Cd during the entire transfer process in natural conditions between soil and sporocarps occurred against a concentration gradient. In fungal mycelium, the concentration of all three metals was about three times higher than in bulk soil, and the concentration in sporocarps was about two times higher than in mycelium. In terms of accumulation, fungi (mycelium and sporocarps) preferred Cd to Zn and Cu. Zinc concentration in sporocarps and to a lesser extent in mycelium depended on the concentration in soil, whereas, the uptake of Cu and Cd by both sporocarps and mycelium did not correlate with metal concentration in soil. Heavy metal accumulation within the fungal mycelium biomass in the top forest soil layer (0–5 cm) might account for ca. 5–9% of the total amount of Cu, 5–11% of Zn, and 16–32% of Cd. As the uptake of zinc and copper by fungi may be balanced, this implied similarities in the uptake mechanism.


Chemosphere | 2013

137Cs in fungal sporocarps in relation to vegetation in a bog, pine swamp and forest along a transect

M. Vinichuk; Klas Rosén; Anna-Karin Dahlberg

In this study, we estimated the relative importance of vegetation and fungi for radiocesium uptake and biological retention in adjacent bog, pine swamp, and forest. The measurements for (137)Cs activity concentration in sporocarps (i.e. fruitbodies of fungi) and vegetation along a bog to forest transect were combined with complementary published data to calculate estimates. Aboveground vegetation comprised 17.7% of the total fallout-derived radiocesium in the system in bog, 16.5% in pine swamp, and 40.6% in forest. In fungal sporocarps grown along a gradient, (137)Cs activity comprised <0.001% of the total radiocesium for peat bog, <0.02% for pine swamp, and 0.11% for forest. Total (137)Cs activity in sporocarps increased along the gradient due to increased production of sporocarps in the presence of trees from 0.006 (bog), 0.097 (pine swamp) and 0.67 (forest) g dwt m(-2). Based on calculation of the total vegetation biomass and through relationships between fungal biomass in sporocarps and as mycelia in soil, the total (137)Cs activity located in fungi was estimated as 0.1% in bog, 2% in pine swamp, and 11% in forest. An analysis of the time-dependency of (137)Cs in the sporocarps in forest between 1990 and 2011 suggested an ecological half-life for (137)Cs between 8 and 13 years. Although fungi comprised a relatively small fraction of the total radiocesium in the systems, its activity decreased slowly with time, and ecological residence time for (137)Cs in sporocarps of fungi was long, suggesting they will continue to contribute to the accumulation and cycling of this radionuclide in forest.


Archive | 2011

Cesium (137Cs and 133Cs), Potassium and Rubidium in Macromycete Fungi and Sphagnum Plants

M. Vinichuk; Anders Dahlberg; Klas Rosén

1.1 Cesium ( 137 Cs and 133 Cs), potassium and rubidium in macromycete fungi Radiocesium (137Cs) released in the environment as result of nuclear weapons tests in the 1950s and 1960s, and later due to the Chernobyl accident in 1986, is still a critical fission product because of its long half-life of 30 years and its high fission yield. The study of the cesium radioisotope 137Cs is important, as production and emission rates are much higher than other radioisotopes. This chapter comprises results obtained in several experiments in Swedish forest ecosystems and aims to discuss the behavior of cesium isotopes (137Cs and 133Cs) and their counterparts potassium (K) and rubidium (Rb) in the ”soil-fungi-plants transfer“ system. The chapter consists of two parts: one mainly dealing with 137Cs, 133Cs, K and Rb in forest soil and macromycete fungi, and the other with the same isotopes in separate segments of Sphagnum plants. The bioavailability of radionuclides controls the ultimate exposure of living organisms and the ambient environment to these contaminants. Consequently, conceptually and methodologically, the understanding of bioavailability of radionuclides is a key issue in the field of radioecology. Soil-fungi-plants transfer is the first step by which 137Cs enters food chains.

Collaboration


Dive into the M. Vinichuk's collaboration.

Top Co-Authors

Avatar

Klas Rosén

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Karl-Johan Johanson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Jan Eriksson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

A. Mårtensson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Annemieke I. Gärdenäs

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Ivanka Nikolova

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders Dahlberg

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge