M. Wade
University College Dublin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Wade.
Reproduction, Fertility and Development | 2008
F. Carter; Niamh Forde; P. Duffy; M. Wade; Trudee Fair; M.A. Crowe; A.C.O. Evans; D. A. Kenny; J.F. Roche; P. Lonergan
Higher systemic progesterone in the immediate post-conception period is associated with an increase in embryonic growth rate, interferon-tau production and pregnancy rate in cattle. The objective of this study was to examine the effect of increasing progesterone concentration on Day 3 on subsequent embryo survival and development. Oestrus (Day 0) was synchronised in beef-cross heifers (n=210) and approximately two-thirds of the heifers were inseminated with semen from a proven sire, while the remainder were not inseminated. In order to produce animals with divergent progesterone concentrations, half of the animals received a progesterone-releasing intravaginal device (PRID) on Day 3 of the oestrous cycle, which was left in situ until slaughter. The four treatment groups were: (i) pregnant, high progesterone; (ii) pregnant, normal progesterone; (iii) non-pregnant, high progesterone; and (iv) non-pregnant, normal progesterone. Animals were blood-sampled twice daily from Days 0 to 8 and once daily thereafter until slaughter on Days 5, 7, 13 or 16, corresponding to the 16-cell stage, the blastocyst stage, the beginning of elongation and the day of maternal recognition of pregnancy, respectively. Embryos were recovered by flushing the tract with phosphate-buffered saline and characterised by stage of development and, in the case of Days 13 and 16, measured. Data were analysed by mixed models ANOVA, Chi-square analysis and Students t-test where appropriate. Insertion of a PRID on Day 3 increased (P<0.05) progesterone concentrations from Day 3.5 onwards. There was no difference between treatments in the proportion of embryos at the expected stage of development on Days 5 or 7 (P>0.05). While not significantly different, the proportion of viable embryos recovered was numerically greater in the high progesterone group on both Day 13 (58 v. 43%) and Day 16 (90 v. 50%). Elevation of progesterone significantly increased embryonic length on Day 13 (2.24+/-0.51 mm v. 1.15+/-0.16 mm, P=0.034) and Day 16 (14.06+/-1.18 cm v. 5.97+/-1.18 cm, P=0.012). In conclusion, insertion of a PRID on Day 3 of the oestrous cycle increased serum progesterone concentrations on subsequent days, which, while having no phenotypic effect on embryonic development on Days 5 or 7, was associated with an increase in embryonic size on Days 13 and 16.
Theriogenology | 1997
E.M. O' Doherty; M. Wade; J.L. Hill; M.P. Boland
In vitro maturation, fertilization and culture (IVM/IVF/IVC) of cattle oocytes from individual cows requires adapting existing culture protocols so that small numbers of oocytes can be cultured. The culture of single oocytes is desirable for correlating the relationship between follicular properties with oocyte developmental competence or for facilitating ovum pick-up procedures. In Experiment 1 we compared group and single culture under cell-free conditions on embryo development; significantly higher (P<0.001) rates of cleavage (66.4 vs 47.6%) and blastocyst formation (7.5 vs 0.5%) were observed in the group cultured oocytes. In Experiment 2 we compared group and single oocyte co-culture with granulosa cells. Although there was no effect of oocyte number on the percentage cleaving (73.1 vs 66.6%), there were significantly higher blastocyst yields (37.4 vs 10.1%) and blastocyst cell numbers (91.6 vs 66.2) in group-cultured oocytes. In Experiment 3 we examined the effect of group size (1, 5, 10, 20 and 40 oocytes) in a co-culture system using granulosa cell monolayers. The results show a difference in cleavage rates between the single cultured oocytes (66.8%) and each group of cultured oocytes, with the highest cleavage rate (81.5%) obtained in the 20-oocyte group. The blastocyst yield from both cleaved and total oocytes showed that group culture of 20 or 40 oocytes resulted in the highest number of blastocysts (32.5%), with smaller group sizes yielding significantly (P<0.05) fewer blastocysts. In Experiment 4 we examined the effects of co-culture on the development of single vs group-cultured oocytes. The results showed no significant difference (P>0.05) in the cleavage rate between single and group culture systems. No blastocysts were formed with single oocytes cultured without monolayers, while the blastocyst formation rate for those co-cultured with granulosa cells was 12.4%. Blastocyst formation was significantly higher (P < 0.006) in group co-culture on monolayers (24.2 vs 8.5%). These data indicate that oocytes cultured in groups are developmentally more competent and suggest that for optimum development oocytes need some undefined paracrine activity that is absent from the culture medium in addition to coculture with granulosa cells, which enhances development to the blastocyst stage of both group and singly cultured oocytes.
Animal Reproduction Science | 2002
S. Papadopoulos; D. Rizos; P. Duffy; M. Wade; K.M. Quinn; M.P. Boland; P. Lonergan
The aim of this study was to assess the effect of production system and of cryopreservation of ovine embryos on their viability when transferred to recipients. The experimental design was an unbalanced 2 x 2 factorial design of two embryo production systems (in vivo versus in vitro) and two embryo preservation conditions prior to transfer (transferred fresh versus transferred after vitrification/warming). For the production of blastocysts in vivo, crossbred donor ewes (n=30) were synchronised using a 13-day intravaginal progestagen pessary. Ewes received 1500 IU equine chorionic gonadotropin (eCG) 2 days before pessary withdrawal, and were mated 2 days after pessary withdrawal and embryos were recovered surgically (6 days after mating). Blastocysts were produced in vitro (IVP) using standard techniques. Recipients (n=95) were synchronised using a progestagen pessary and received 500 IU eCG at pessary removal and were randomly assigned to receive (two per recipient) in vivo fresh (n=10), in vivo vitrified (n=10), in vitro fresh (n=35) or in vitro vitrified (n=40) blastocysts. Recipients were slaughtered at day 42 of gestation and foetuses recovered. Pregnancy and embryo survival rates were recorded and analysed using CATMOD procedures. Foetal weights and crown-rump lengths were recorded and analysed using generalised linear model (GLM) procedures. There were no statistically significant interactions between the effects of embryo production system and preservation status at transfer on pregnancy rate and embryo survival. The pregnancy rate following transfer of fresh IVP blastocysts was lower (P<0.07) than that of in vivo embryos (54.3% versus 90.0%, respectively). Vitrification resulted in a decrease in pregnancy rate, the effect being more pronounced in the case of IVP embryos (54.3-5.0%, P<0.001) compared with in vivo embryos (90.0-50.0%), although the absolute change was similar (49.3% versus 40.0%). Transfer of fresh IVP blastocysts resulted in a higher proportion of single (78.9% versus 33.3%) and lower proportion of twin (21.1% versus 66.7%) pregnancies than those produced in vivo. This was reflected in a significant difference in embryo survival rate (fresh: 32.8% versus 75.0%, P<0.01; vitrified: 2.5% versus 35.0%, P<0.001, for IVP and in vivo blastocysts, respectively). Similarly, all pregnancies resulting from the transfer of vitrified/warmed IVP blastocysts were single pregnancies, while 40% of those from vitrified/warmed in vivo blastocysts were twin pregnancies; this was reflected in an embryo survival rate of 35.0% versus 75.0%, respectively. There was a significant effect (P=0.0184) of litter size on foetal weight but not on foetal length (P=0.3304). Foetuses derived from the fresh transfer of IVP blastocysts were heavier (6.4+/-0.2g versus 5.8+/-0.2g, respectively, P<0.05) and longer (5.2+/-0.1cm versus 4.8+/-0.1cm, respectively, P<0.01) than those derived from fresh in vivo blastocysts. There was no difference in these parameters as a consequence of vitrification of IVP embryos. However, in vivo blastocysts subjected to vitrification resulted in heavier (6.6+/-0.3g versus 5.8+/-0.2g, respectively, P=0.055) and longer (5.2+/-0.1cm versus 4.8+/-0.1cm, respectively, P<0.05) foetuses than their counterparts transferred fresh.
Theriogenology | 2008
C.M. O’Meara; J.P. Hanrahan; N.S. Prathalingam; J.S. Owen; A. Donovan; S. Fair; F. Ward; M. Wade; A.C.O. Evans; P. Lonergan
Several procedures have been proposed to assess structural and functional characteristics of cryopreserved ram semen but none so far have yielded consistent relationships with in vivo fertility. The objectives of this study were to evaluate several sperm function tests as potential markers of in vivo ram fertility (determined by pregnancy rate in ewes) using frozen-thawed semen. In experiment 1, frozen-thawed straws (n=3 per ram) of semen from three high and three low fertility rams were assessed using fluorescent microscopy for (1) progressive motility, (2) viability and, (3) acrosomal status. In experiment 2, frozen-thawed straws (n=3 per ram) of semen from 18 rams of known fertility were analysed using either computer-assisted sperm analysis (CASA) for eight motion characteristics or flow cytometric staining for: (1) viability and acrosomal status, (2) plasma membrane status and capacitation-like changes, and (3) live cells following an osmotic resistance test (ORT). In experiment 3, platelet-activating factor (PAF) was isolated from straws (n=2 per ram) of semen using high-pressure liquid chromatography (HPLC) and quantified using HPLC-tandem mass spectrometry for 18 rams. In experiment 1, no association was found between motility, viability (% live) or acrosomal status (% damaged, % intact and % reacted) and in vivo fertility. In experiment 2, no correlation was found between motility (CASA), viability (% live), acrosomal status (% live, % live intact and % reacted), capacitation status (% capacitated, % non-capacitated), plasma membrane stability (% dead) and % live cells following ORT and ram in vivo fertility. In experiment 3, there was no relationship between PAF content in spermatozoa and ram fertility. In conclusion, we were unable to relate the in vivo fertility of rams with in vitro functional tests of their frozen-thawed semen and suggest that the fertility of a given semen sample cannot easily be quantified using available in vitro tests.
Molecular Reproduction and Development | 1997
J.L. Hill; M. Wade; C.D. Nancarrow; D.L. Kelleher; M.P. Boland
This study examined the effects of incorporating an ovine oviducal oestrus‐associated glycoprotein (oEGP) and amino acids, at the concentrations present in the ovine oviduct around the time of oestrus, on in vitro production and subsequent viability of bovine embryos. The first experiment compared the influence of ovine oviducal concentrations of amino acids with MEM and BME amino acids. There was no treatment effect on cleavage rate (74.9% vs. 75.5%), but there was a higher (P < 0.05) blastocyst yield (30.4 vs. 25.2) and a shorter time (P < 0.05) to blastocyst formation (7.16 ± 0.64 vs. 7.27 ± 0.56 days) following use of oviducal concentrations of amino acids. Experiment 2 examined the influence of oEGP in combination with each of the amino acid treatments. oEGP had no effect on cleavage or blastocyst yield within amino acid treatments. Day of blastocyst formation significantly influenced nuclei numbers (P < 0.001) with higher numbers being obtained on day 7 than on either day 6 or day 8. There was also a significant (P < 0.01) interaction between day of blastocyst formation and amino acid treatment on blastocyst nuclei numbers. The third experiment studied the effects of the amino acid treatments on embryo viability. There was no effect of amino acid treatment of embryos on pregnancy rates (34.5 vs. 44.4%) following transfer of days 6 and 7 blastocysts to synchronized recipients. oEGP did not influence any of the parameters of bovine embryo development that were measured, suggesting that effects of this protein observed on ovine embryos are species specific. It is concluded that ovine oviducal amino acid concentrations are beneficial to blastocyst development in vitro but do not have any further beneficial effect following transfer of blastocysts to recipients. Mol. Reprod. Dev. 47:164–169, 1997.
Theriogenology | 2011
A. Al Naib; F. Ward; A. K. Kelly; M. Wade; J.I. Marti; P. Lonergan
Although the use of fresh semen in the Irish dairy AI industry only accounts for 5% of total AI usage, this may peak to over 25% during the spring breeding season due to the increased demand for Irish proven sires of high genetic merit. The aim of this study was to examine the effect of storage of fresh semen for up to 7 d at ambient temperature on fertilization and embryo development in vitro, and on the ability of sperm to penetrate artificial mucus in vitro. In vitro matured bovine oocytes were inseminated with fresh semen stored in a caprogen-based diluent, with or without prior Percoll separation. Irrespective of sire, storage of fresh semen at ambient temperature for up to 7 d post collection had no effect on cleavage rate or blastocyst development after IVF. In addition, blastocyst quality, as assessed by the proportion of blastocysts hatching from the zona, was not affected by semen storage. Higher numbers of fresh sperm migrated through artificial mucus on Day 0 (day of semen collection) compared with frozen-thawed sperm. On Day 1 and 2 postcollection there was no difference in the number of sperm migrating through the mucus, but storage of sperm at ambient temperature for longer than 2 d resulted in a significant decline in their ability to penetrate mucus compared with frozen sperm from the same ejaculate. In conclusion, bovine sperm retain the ability to fertilize oocytes in vitro for up to 7 d following storage at ambient temperature. However, the ability of sperm to migrate through artificial mucus in vitro is severely depressed after 2 d storage which may have significant implications for the ability of these sperm to reach the site of fertilization in vivo after AI.
Reproduction | 2003
P. Lonergan; D. Rizos; J Kanka; L Nemcova; Am Mbaye; M Kingston; M. Wade; P. Duffy; M.P. Boland
Animal Reproduction Science | 2000
G.P Byrne; P. Lonergan; M. Wade; P. Duffy; A. Donovan; J.P. Hanrahan; M.P. Boland
Theriogenology | 2005
C.M. O’Meara; J.P. Hanrahan; A. Donovan; S. Fair; D. Rizos; M. Wade; M.P. Boland; A.C.O. Evans; P. Lonergan
Theriogenology | 2005
S. Fair; J.P. Hanrahan; C.M. O’Meara; P. Duffy; D. Rizos; M. Wade; A. Donovan; M.P. Boland; P. Lonergan; A.C.O. Evans