M. Weller
Goethe University Frankfurt
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Weller.
Physical Review Letters | 2013
F. Trinter; Joshua Williams; M. Weller; M. Waitz; M. Pitzer; J. Voigtsberger; C. Schober; Gregor Kastirke; C. Müller; C. Goihl; Phillip Burzynski; Florian Wiegandt; R. Wallauer; Anton Kalinin; L. Schmidt; M. Schöffler; Ying-Chih Chiang; Kirill Gokhberg; T. Jahnke; R. Dörner
We investigate the ionization of HeNe from below the He 1s3p excitation to the He ionization threshold. We observe HeNe+ ions with an enhancement by more than a factor of 60 when the He side couples resonantly to the radiation field. These ions are an experimental proof of a two-center resonant photoionization mechanism predicted by Najjari et al. [Phys. Rev. Lett. 105, 153002 (2010)]. Furthermore, our data provide electronic and vibrational state resolved decay widths of interatomic Coulombic decay in HeNe dimers. We find that the interatomic Coulombic decay lifetime strongly increases with increasing vibrational state.
Physical Review Letters | 2013
F. Trinter; Joshua Williams; M. Weller; M. Waitz; M. Pitzer; J. Voigtsberger; C. Schober; Gregor Kastirke; C. Müller; C. Goihl; Phillip Burzynski; Florian Wiegandt; Tobias Bauer; R. Wallauer; H. Sann; Anton Kalinin; L. Ph. H. Schmidt; M. Schöffler; Nicolas Sisourat; T. Jahnke
During the past 15 years a novel decay mechanism of excited atoms has been discovered and investigated. This so-called interatomic Coulombic decay (ICD) involves the chemical environment of the electronically excited atom: the excitation energy is transferred (in many cases over long distances) to a neighbor of the initially excited particle usually ionizing that neighbor. It turned out that ICD is a very common decay route in nature as it occurs across van der Waals and hydrogen bonds. The time evolution of ICD is predicted to be highly complex, as its efficiency strongly depends on the distance of the atoms involved and this distance typically changes during the decay. Here we present the first direct measurement of the temporal evolution of ICD using a novel experimental approach.
Proceedings of the National Academy of Sciences of the United States of America | 2016
S. Zeller; Maksim Kunitski; J. Voigtsberger; Anton Kalinin; Alexander Schottelius; C. Schober; M. Waitz; H. Sann; Alexander Hartung; Tobias Bauer; M. Pitzer; F. Trinter; C. Goihl; Christian Janke; Martin Richter; Gregor Kastirke; M. Weller; A. Czasch; Markus Kitzler; Markus Braune; R. E. Grisenti; Wieland Schöllkopf; L. Schmidt; M. Schöffler; J. B. Williams; T. Jahnke; R. Dörner
Significance In bound matter on all length scales, from nuclei to molecules to macroscopic solid objects, most of the density of the bound particles is within the range of the interaction potential which holds the system together. Quantum halos on the contrary are a type of matter where the particle density is mostly outside the range of the interaction potential in the tunneling region of the potential. Few examples of these fascinating systems are known in nuclear and molecular physics. The conceptually simplest halo system is made of only two particles. Here we experimentally image the wavefunction of the He2 quantum halo. It shows the predicted exponential shape of a tunneling wavefunction. Quantum tunneling is a ubiquitous phenomenon in nature and crucial for many technological applications. It allows quantum particles to reach regions in space which are energetically not accessible according to classical mechanics. In this “tunneling region,” the particle density is known to decay exponentially. This behavior is universal across all energy scales from nuclear physics to chemistry and solid state systems. Although typically only a small fraction of a particle wavefunction extends into the tunneling region, we present here an extreme quantum system: a gigantic molecule consisting of two helium atoms, with an 80% probability that its two nuclei will be found in this classical forbidden region. This circumstance allows us to directly image the exponentially decaying density of a tunneling particle, which we achieved for over two orders of magnitude. Imaging a tunneling particle shows one of the few features of our world that is truly universal: the probability to find one of the constituents of bound matter far away is never zero but decreases exponentially. The results were obtained by Coulomb explosion imaging using a free electron laser and furthermore yielded He2’s binding energy of 151.9±13.3 neV, which is in agreement with most recent calculations.
Physical Review Letters | 2016
H. Gassert; O Chuluunbaatar; M. Waitz; F. Trinter; H.-K. Kim; Tobias Bauer; Alina Laucke; C. Müller; J. Voigtsberger; M. Weller; J. Rist; M. Pitzer; S. Zeller; T. Jahnke; L. Ph. H. Schmidt; J. B. Williams; S. A. Zaytsev; A. A. Bulychev; Konstantin A. Kouzakov; H. Schmidt-Böcking; R. Dörner; Yu. V. Popov; M. Schöffler
Even though the study of ion-atom collisions is a mature field of atomic physics, large discrepancies between experiment and theoretical calculations are still common. Here we present experimental results with high momentum resolution on the single ionization of helium induced by 1-MeV protons, and we compare these to theoretical calculations. The overall agreement is strikingly good, and even the first Born approximation yields good agreement between theory and experiment. This has been expected for several decades, but so far has not been accomplished. The influence of projectile coherence effects on the measured data is briefly discussed in terms of an ongoing dispute on the existence of nodal structures in the electron angular emission distributions.
Journal of Physical Chemistry Letters | 2017
Maurice Tia; M. Pitzer; Gregor Kastirke; Janine Gatzke; H.-K. Kim; F. Trinter; J. Rist; Alexander Hartung; Daniel Trabert; Juliane Siebert; Kevin Henrichs; Jasper Becht; S. Zeller; H. Gassert; Florian Wiegandt; R. Wallauer; Andreas Kuhlins; C. Schober; Tobias Bauer; Natascha Wechselberger; Phillip Burzynski; Jonathan Neff; M. Weller; D. Metz; Max Kircher; M. Waitz; Joshua Williams; L. Schmidt; Anne D. Müller; André Knie
Most large molecules are chiral in their structure: they exist as two enantiomers, which are mirror images of each other. Whereas the rovibronic sublevels of two enantiomers are almost identical (neglecting a minuscular effect of the weak interaction), it turns out that the photoelectric effect is sensitive to the absolute configuration of the ionized enantiomer. Indeed, photoionization of randomly oriented enantiomers by left or right circularly polarized light results in a slightly different electron flux parallel or antiparallel with respect to the photon propagation direction-an effect termed photoelectron circular dichroism (PECD). Our comprehensive study demonstrates that the origin of PECD can be found in the molecular frame electron emission pattern connecting PECD to other fundamental photophysical effects such as the circular dichroism in angular distributions (CDAD). Accordingly, distinct spatial orientations of a chiral molecule enhance the PECD by a factor of about 10.
Physical Review Letters | 2016
H. Sann; T. Havermeier; C Mueller; Kim H.‐K.; F. Trinter; M Waltz; J. Voigtsberger; F. Sturm; Tobias Bauer; R. Wallauer; D. Schneider; M. Weller; C. Goihl; J Tross; K. Cole; Jian Wu; Markus Schoeffler; Horst W. Schmidt-Boecking; T. Jahnke; Marc Simon; R. Doerner
We investigate the temporal evolution of molecular frame angular distributions of Auger electrons emitted during ultrafast dissociation of HCl following a resonant single-photon excitation. The electron emission pattern changes its shape from that of a molecular σ orbital to that of an atomic p state as the system evolves from a molecule into two separated atoms.
Journal of Physics B | 2016
M. Pitzer; Gregor Kastirke; Phillip Burzynski; M. Weller; D. Metz; Jonathan Neff; M. Waitz; F. Trinter; L. Schmidt; J. B. Williams; T. Jahnke; H. Schmidt-Böcking; Robert Berger; R. Dörner; M. Schöffler
X-ray single-photon ionization and fragmentation of the chiral molecule halothane (CHBrClCF
Journal of Physics B | 2017
J. B. Williams; Ulf Saalmann; F. Trinter; M. Schöffler; M. Weller; Phillip Burzynski; C. Goihl; Kevin Henrichs; C Janke; B Griffin; Gregor Kastirke; Jonathan Neff; M. Pitzer; M. Waitz; Y Yang; G. Schiwietz; S. Zeller; T. Jahnke; R. Dörner
{}_{3}
Physical Review A | 2014
Phillip Burzynski; F. Trinter; J. B. Williams; M. Weller; M. Waitz; M. Pitzer; J. Voigtsberger; C. Schober; Gregor Kastirke; C. Müller; C. Goihl; Florian Wiegandt; R. Wallauer; Anton Kalinin; L. Ph. H. Schmidt; M. Schöffler; G. Schiwietz; Nicolas Sisourat; T. Jahnke; R. Dörner
) from a racemic mixture have been investigated using the COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy) technique. Two important facets related to the core ionization of this species are examined: Firstly, the distinction of enantiomers (mirror isomers) and the determination of absolute configuration on a single-molecule level by four-body Coulomb explosion; secondly, the interplay of site-selective excitation and fragmentation patterns. These results are easily transferrable to other molecular species and show the wealth of features
Physical Review Letters | 2016
M. Waitz; D. Aslitürk; N. Wechselberger; H. K. Gill; J. Rist; Florian Wiegandt; C. Goihl; Gregor Kastirke; M. Weller; Tobias Bauer; D. Metz; F. Sturm; J. Voigtsberger; S. Zeller; F. Trinter; G. Schiwietz; Thorsten Weber; Joshua Williams; M. Schöffler; L. Ph. H. Schmidt; T. Jahnke; R. Dörner
We investigate the dynamics of ultra-low kinetic energy photoelectrons. Many experimental techniques employed for the detection of photoelectrons require the presence of (more or less) weak electric extraction fields in order to perform the measurement. Our studies show that ultra-low energy photoelectrons exhibit a characteristic shift in their apparent measured momentum when the target system is exposed to such static electric fields. Already fields as weak as 1 V cm–1 have an observable influence on the detected electron momentum. This apparent shift is demonstrated by an experiment on zero energy photoelectrons emitted from He and explained through theoretical model calculations.