Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Yildirim is active.

Publication


Featured researches published by M. Yildirim.


Caries Research | 2008

Enamel Formation Genes Are Associated with High Caries Experience in Turkish Children

Asli Patir; Figen Seymen; M. Yildirim; Kathleen Deeley; Margaret E. Cooper; Mary L. Marazita; Alexandre R. Vieira

There is evidence for a genetic component in caries susceptibility, and studies in humans have suggested that variation in enamel formation genes and their interaction with Streptococcus mutans levels may contribute to caries. For the present study, we used DNA samples collected from 173 unrelated children from Istanbul: 91 children with 4 or more affected tooth surfaces and 82 caries-free children. Six single-nucleotide polymorphism markers were genotyped in selected candidate genes (ameloblastin, amelogenin, enamelin, tuftelin 1 and tuftelin interacting protein 11) that influence enamel formation. Allele and genotype frequencies were compared between groups with distinct caries experience. Regression analysis was used for the evaluation of individual gene effects, environmental effects and gene-environment interactions. Overrepresentation of the C allele of the amelogenin marker was seen in cases with dmft scores higher than 8 (p = 0.01) when compared to controls. Also, overrepresentation of the T allele of the ameloblastin marker was seen in cases with dmfs scores higher than 10 (p = 0.05) when compared to controls. In addition, the CT genotype of the tuftelin rs3790506 marker was overrepresented in cases with dmft scores higher than 5 (p = 0.05) and dmfs scores higher than 6 (p = 0.05) compared to controls. The best-fitting model showed that dmfs is increased when the following factors are present: (1) females and both the anterior and posterior teeth are affected simultaneously, (2) when the T allele of the tuftelin rs3790506 is involved, and (3) the C allele of the amelogenin rs17878486 is involved. Our study provides support that genes involved in enamel formation modify caries susceptibility in humans.


PLOS ONE | 2012

Enamel Formation Genes Influence Enamel Microhardness Before and After Cariogenic Challenge

Takehiko Shimizu; Bao Ho; Kathleen Deeley; Jessica Briseño-Ruiz; Italo M. Faraco; Brett I. Schupack; João Armando Brancher; Giovana Daniela Pecharki; Erika Calvano Küchler; Patricia Nivoloni Tannure; Andrea Lips; Thays Cristine dos Santos Vieira; Asli Patir; M. Yildirim; Fernando A. Poletta; Juan C. Mereb; Judith M. Resick; Carla A. Brandon; Iêda M. Orioli; Eduardo E. Castilla; Mary L. Marazita; Figen Seymen; Marcelo de Castro Costa; José Mauro Granjeiro; Paula Cristina Trevilatto; Alexandre R. Vieira

There is evidence for a genetic component in caries susceptibility, and studies in humans have suggested that variation in enamel formation genes may contribute to caries. For the present study, we used DNA samples collected from 1,831 individuals from various population data sets. Single nucleotide polymorphism markers were genotyped in selected genes (ameloblastin, amelogenin, enamelin, tuftelin, and tuftelin interacting protein 11) that influence enamel formation. Allele and genotype frequencies were compared between groups with distinct caries experience. Associations with caries experience can be detected but they are not necessarily replicated in all population groups and the most expressive results was for a marker in AMELX (p = 0.0007). To help interpret these results, we evaluated if enamel microhardness changes under simulated cariogenic challenges are associated with genetic variations in these same genes. After creating an artificial caries lesion, associations could be seen between genetic variation in TUFT1 (p = 0.006) and TUIP11 (p = 0.0006) with enamel microhardness. Our results suggest that the influence of genetic variation of enamel formation genes may influence the dynamic interactions between the enamel surface and the oral cavity.


Journal of Dental Research | 2014

STIM1 and SLC24A4 Are Critical for Enamel Maturation

Shih Kai Wang; Murim Choi; Amelia S. Richardson; Bryan M. Reid; Figen Seymen; M. Yildirim; Elif Bahar Tuna; Koray Gencay; James P. Simmer; Jan C.-C. Hu

Dental enamel formation depends upon the transcellular transport of Ca2+ by ameloblasts, but little is known about the molecular mechanism, or even if the same process is operative during the secretory and maturation stages of amelogenesis. Identifying mutations in genes involved in Ca2+ homeostasis that cause inherited enamel defects can provide insights into the molecular participants and potential mechanisms of Ca2+ handling by ameloblasts. Stromal Interaction Molecule 1 (STIM1) is an ER transmembrane protein that activates membrane-specific Ca2+ influx in response to the depletion of ER Ca2+ stores. Solute carrier family 24, member 4 (SLC24A4), is a Na+/K+/Ca2+ transporter that exchanges intracellular Ca2+ and K+ for extracellular Na+. We identified a proband with syndromic hypomaturation enamel defects caused by a homozygous C to T transition (g.232598C>T c.1276C>T p.Arg426Cys) in STIM1, and a proband with isolated hypomaturation enamel defects caused by a homozygous C to T transition (g.124552C>T; c.437C>T; p.Ala146Val) in SLC24A4. Immunohistochemistry of developing mouse molars and incisors showed positive STIM1 and SLC24A4 signal specifically in maturation-stage ameloblasts. We conclude that enamel maturation is dependent upon STIM1 and SLC24A4 function, and that there are important differences in the Ca2+ transcellular transport systems used by secretory- and maturation-stage ameloblasts.


Human Mutation | 2012

Novel FAM20A mutations in hypoplastic amelogenesis imperfecta.

Sang Hyun Cho; Figen Seymen; Kyung-Eun Lee; Sook-Kyung Lee; Young-Sun Kweon; Kyung Jin Kim; Seung-Eun Jung; Su Jeong Song; M. Yildirim; Merve Bayram; Elif Bahar Tuna; Koray Gencay; Jung-Wook Kim

Amelogenesis imperfecta (AI) is a genetically and clinically heterogeneous group of inherited dental enamel defects without any other nonoral symptoms. Recently, a disease‐causing nonsense mutation (c.406C>T) in a novel gene, FAM20A, was identified in a large consanguineous family affected by AI with gingival hyperplasia. We performed mutational analyses on nine AI families with similar phenotypes and identified three homozygous mutations (c.34_35delCT, c.813‐2A>G, c.1175_1179delGGCTC) in three families and a compound heterozygous mutation (c.[590‐2A>G] + [c.826C>T]) in one family. An in vitro splicing assay with a minigene confirmed the mutations located in the splicing acceptor site caused the deletion of exons 3 and 6, respectively. Taking into consideration the locations of the nonsense and frameshift mutations, the mutant transcripts are most likely degraded by nonsense‐mediated mRNA degradation and it results in a loss of the FAM20A protein. This study confirms the importance of the FAM20A protein in enamel biomineralization as well as tooth eruption. Hum Mutat 33:91–94, 2012.


Journal of Dental Research | 2013

Novel KLK4 and MMP20 Mutations Discovered by Whole-exome Sequencing

Shih Kai Wang; Yuanyuan Hu; James P. Simmer; Figen Seymen; Ninna M R P Estrella; S. Pal; Bryan M. Reid; M. Yildirim; Merve Bayram; John D. Bartlett; Jan C.-C. Hu

Non-syndromic amelogenesis imperfecta (AI) is a collection of isolated inherited enamel malformations that follow X-linked, autosomal-dominant, or autosomal-recessive patterns of inheritance. The AI phenotype is also found in syndromes. We hypothesized that whole-exome sequencing of AI probands showing simplex or recessive patterns of inheritance would identify causative mutations among the known candidate genes for AI. DNA samples obtained from 12 unrelated probands with AI were analyzed. Disease-causing mutations were identified in three of the probands: a novel single-nucleotide deletion in both KLK4 alleles (g.6930delG; c.245delG; p.Gly82Alafs*87) that shifted the reading frame, a novel missense transition mutation in both MMP20 alleles (g.15390A>G; c.611A>G; p.His204Arg) that substituted arginine for an invariant histidine known to coordinate a structural zinc ion, and a previously described nonsense transition mutation in a single allele of FAM83H (c.1379G>A; g.5663G>A; p.W460*). Erupted molars and cross-sections from unerupted parts of the mandibular incisors of Mmp20 null mice were characterized by scanning electron microscopy. Their enamel malformations closely correlated with the enamel defects displayed by the proband with the MMP20 mutation. We conclude that whole-exome sequencing is an effective means of identifying disease-causing mutations in kindreds with AI, and this technique should prove clinically useful for this purpose.


Journal of Dental Research | 2013

LAMB3 Mutations Causing Autosomal-dominant Amelogenesis Imperfecta

Jung Wook Kim; Figen Seymen; Kyung-Eun Lee; J. Ko; M. Yildirim; Elif Bahar Tuna; Koray Gencay; Teo Jeon Shin; H.K. Kyun; James P. Simmer; J.C.-C. Hu

Amelogenesis imperfecta (AI) can be either isolated or part of a larger syndrome. Junctional epidermolysis bullosa (JEB) is a collection of autosomal-recessive disorders featuring AI associated with skin fragility and other symptoms. JEB is a recessive syndrome usually caused by mutations in both alleles of COL17A1, LAMA3, LAMB3, or LAMC2. In rare cases, heterozygous carriers in JEB kindreds display enamel malformations in the absence of skin fragility (isolated AI). We recruited two kindreds with autosomal-dominant amelogenesis imperfecta (ADAI) characterized by generalized severe enamel hypoplasia with deep linear grooves and pits. Whole-exome sequencing of both probands identified novel heterozygous mutations in the last exon of LAMB3 that likely truncated the protein. The mutations perfectly segregated with the enamel defects in both families. In Family 1, an 8-bp deletion (c.3446_3453del GACTGGAG) shifted the reading frame (p.Gly 1149Glufs*8). In Family 2, a single nucleotide substitution (c.C3431A) generated an in-frame translation termination codon (p.Ser1144*). We conclude that enamel formation is particularly sensitive to defects in hemidesmosome/basement-membrane complexes and that syndromic and non-syndromic forms of AI can be etiologically related.


Journal of Dental Research | 2009

Candidate Gene Strategy Reveals ENAM Mutations

H.-Y. Kang; Figen Seymen; Sunhwa Lee; M. Yildirim; E. Bahar Tuna; Asli Patir; K.-E. Lee; J.-W. Kim

Amelogenesis imperfecta (AI) is a genetically and phenotypically heterogeneous genetic disorder affecting tooth enamel without other non-oral syndromic conditions. Based on a review of the literature, the authors constructed a candidate-gene-based mutational analysis strategy. To test the strategy, they identified two Turkish families with hypoplastic enamel without any other non-oral syndromic phenotype. The authors analyzed all exons and exon/intron boundaries of the enamelin (ENAM) gene for family 1 and the DLX3 and ENAM genes for family 2, to identify the underlying genetic etiology. The analysis revealed 2 ENAM mutations (autosomal-dominant g.14917delT and autosomal-recessive g.13185–13186insAG mutations). A single T deletion in exon 10 is a novel deletional mutation (g.14917delT, c.2991delT), which is predicted to result in a frameshift with a premature termination codon (p.L998fsX1062). This result supports the use of a candidate-gene-based strategy to study the genetic basis for AI.


Journal of Dental Research | 2010

Novel WDR72 Mutation and Cytoplasmic Localization

Sunhwa Lee; Figen Seymen; Kyung-Eun Lee; H.-Y. Kang; M. Yildirim; E. Bahar Tuna; Koray Gencay; Y.-H. Hwang; K.H. Nam; R.J. De La Garza; J.C.-C. Hu; James P. Simmer; Jung Wook Kim

The proven candidate genes for amelogenesis imperfecta (AI) are AMELX, ENAM, MMP20, KLK4, FAM83H, and WDR72. We performed mutation analyses on seven families with hypomaturation AI. A novel WDR72 dinucleotide deletion mutation (g.57,426_57,427delAT; c.1467_ 1468delAT; p.V491fsX497) was identified in both alleles of probands from Mexico and Turkey. Haplotype analyses showed that the mutations arose independently in the two families. The disease perfectly segregated with the genotype. Only persons with both copies of the mutant allele were affected. Their hypomineralized enamel suffered attrition and orange-brown staining following eruption. Expression of WDR72 fused to green fluorescent protein showed a cytoplasmic localization exclusively and was absent from the nucleus. We conclude that WDR72 is a cytoplasmic protein that is critical for dental enamel formation.


Journal of Dental Research | 2014

Exonal Deletion of SLC24A4 Causes Hypomaturation Amelogenesis Imperfecta

Figen Seymen; K.-E. Lee; C.G. Tran Le; M. Yildirim; Koray Gencay; Z.H. Lee; J.-W. Kim

Amelogenesis imperfecta is a heterogeneous group of genetic conditions affecting enamel formation. Recently, mutations in solute carrier family 24 member 4 (SLC24A4) have been identified to cause autosomal recessive hypomaturation amelogenesis imperfecta. We recruited a consanguineous family with hypomaturation amelogenesis imperfecta with generalized brown discoloration. Sequencing of the candidate genes identified a 10-kb deletion, including exons 15, 16, and most of the last exon of the SLC24A4 gene. Interestingly, this deletion was caused by homologous recombination between two 354-bp-long homologous sequences located in intron 14 and the 3′ UTR. This is the first report of exonal deletion in SLC24A4 providing confirmatory evidence that the function of SLC24A4 in calcium transport has a crucial role in the maturation stage of amelogenesis.


Caries Research | 2013

Fine-Mapping of 5q12.1-13.3 Unveils New Genetic Contributors to Caries

Takehiko Shimizu; Kathleen Deeley; Jessica Briseño-Ruiz; Italo M. Faraco; Fernando A. Poletta; João Armando Brancher; Giovana Daniela Pecharki; Erika Calvano Küchler; Patricia Nivoloni Tannure; Andrea Lips; Thays Cristine dos Santos Vieira; Asli Patir; M. Yildirim; Juan C. Mereb; Judith M. Resick; Carla A. Brandon; Margaret E. Cooper; Figen Seymen; Marcelo de Castro Costa; José Mauro Granjeiro; Paula Cristina Trevilatto; Iêda M. Orioli; E.E. Castilla; Mary L. Marazita; Alexandre R. Vieira

Caries is a multifactorial disease and little is still known about the host genetic factors influencing susceptibility. Our previous genome-wide linkage scan has identified the interval 5q12.1–5q13.3 as linked to low caries susceptibility in Filipino families. Here we fine-mapped this region in order to identify genetic contributors to caries susceptibility. Four hundred and seventy-seven subjects from 72 pedigrees with similar cultural and behavioral habits and limited access to dental care living in the Philippines were studied. DMFT scores and genotype data of 75 single-nucleotide polymorphisms were evaluated in the Filipino families with the Family-Based Association Test. For replication purposes, a total 1,467 independent subjects from five different populations were analyzed in a case-control format. In the Filipino cohort, statistically significant and borderline associations were found between low caries experience and four genes spanning 13 million base pairs (PART1, ZSWIM6, CCNB1, and BTF3). We were able to replicate these results in some of the populations studied. We detected PART1 and BTF3 expression in whole saliva, and the expression of BTF3 was associated with caries experience. Our results suggest BTF3 may have a functional role in protecting against caries.

Collaboration


Dive into the M. Yildirim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge