M. Zahid Hasan
Princeton University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Zahid Hasan.
Nature Materials | 2010
Hsin Lin; L. Andrew Wray; Y. Xia; Su-Yang Xu; Shuang Jia; R. J. Cava; A. Bansil; M. Zahid Hasan
Topological insulators (TI) realize a novel state of quantum matter that are distinguished by topological invariants of bulk band structure rather than spontaneously broken symmetries. A number of exotic quantum phenomena have been predicted to exist in multiply-connected geometries which require an enormous amount of materials flexibility. We have extended our previous search for TI materials from binary (Bi2X3 series) to the thermoelectric ternary compounds. We discover that the distorted LuPtSb is the first ternary compound harboring a 3D topological insulator state. We also show that the half-Heusler LuPtSb-type series is a natural platform that hosts a range of candidate compounds, alloys and artificial heterostructures (quantum-wells). We also discovered several different paradigms of trivial and non-trivial topological ordering in this class, including a metallic nontrivial topological state in YAuPb. Some of these materials are grown (results will be reported separately).Recent discovery of spin-polarized single-Dirac-cone insulators, whose variants can host magnetism and superconductivity, has generated widespread research activity in condensed-matter and materials-physics communities. Some of the most interesting topological phenomena, however, require topological insulators to be placed in multiply connected, highly constrained geometries with magnets and superconductors, all of which thus require a large number of functional variants with materials design flexibility as well as electronic, magnetic and superconducting tunability. Given the optimum materials, topological properties open up new vistas in spintronics, quantum computing and fundamental physics. We have extended the search for topological insulators from the binary Bi-based series to the ternary thermoelectric Heusler compounds. Here we show that, although a large majority of the well-known Heuslers such as TiNiSn and LuNiBi are rather topologically trivial, the distorted LnPtSb-type (such as LnPtBi or LnPdBi, Ln = f(n) lanthanides) compounds belonging to the half-Heusler subclass harbour Z(2) = -1 topological insulator parent states, where Z(2) is the band purity product index. Our results suggest that half-Heuslers provide a new platform for deriving a host of topologically exotic compounds and their nanoscale or thin-film device versions through the inherent flexibility of their lattice parameter, spin-orbit strength and magnetic moment tunability paving the way for the realization of multifunctional topological devices.
Nature Communications | 2015
Shin-Ming Huang; Su-Yang Xu; Ilya Belopolski; Chi-Cheng Lee; Guoqing Chang; Baokai Wang; Nasser Alidoust; Guang Bian; Madhab Neupane; Chenglong Zhang; Shuang Jia; A. Bansil; Hsin Lin; M. Zahid Hasan
The recent discoveries of Dirac fermions in graphene and on the surface of topological insulators have ignited worldwide interest in physics and materials science. A Weyl semimetal is an unusual crystal where electrons also behave as massless quasi-particles but interestingly they are not Dirac fermions. These massless particles, Weyl fermions, were originally considered in massless quantum electrodynamics but have not been observed as a fundamental particle in nature. A Weyl semimetal provides a condensed matter realization of Weyl fermions, leading to unique transport properties with novel device applications. Here, we THEORETICALLY identify the first Weyl semimetal in a class of stoichiometric materials (TaAs, NbAs, NbP, TaP), which break crystalline inversion symmetry, including TaAs, TaP, NbAs and NbP. Our first-principles calculation-based predictions on TaAs reveal the spin-polarized Weyl cones and Fermi arc surface states in this compound. We also observe pairs of Weyl points with the same chiral charge which project onto the same point in the surface Brillouin zone, giving rise to multiple Fermi arcs connecting to a given Weyl point. Our results show that TaAs is the first topological semimetal identified which does not depend on fine-tuning of chemical composition or magnetic order, greatly facilitating an exploration of Weyl physics in real materials. (Note added: This theoretical prediction of November 2014 (see paper in Nature Communications) was the basis for the first experimental discovery of Weyl Fermions and topological Fermi arcs in TaAs recently published in Science (2015) at this http URL)Weyl fermions are massless chiral fermions that play an important role in quantum field theory but have never been observed as fundamental particles. A Weyl semimetal is an unusual crystal that hosts Weyl fermions as quasiparticle excitations and features Fermi arcs on its surface. Such a semimetal not only provides a condensed matter realization of the anomalies in quantum field theories but also demonstrates the topological classification beyond the gapped topological insulators. Here, we identify a topological Weyl semimetal state in the transition metal monopnictide materials class. Our first-principles calculations on TaAs reveal its bulk Weyl fermion cones and surface Fermi arcs. Our results show that in the TaAs-type materials the Weyl semimetal state does not depend on fine-tuning of chemical composition or magnetic order, which opens the door for the experimental realization of Weyl semimetals and Fermi arc surface states in real materials.
Nature Physics | 2015
Su Yang Xu; Nasser Alidoust; Ilya Belopolski; Zhujun Yuan; Guang Bian; Tay-Rong Chang; Hao Zheng; V. N. Strocov; Daniel S. Sanchez; Guoqing Chang; Chenglong Zhang; Daixiang Mou; Yun Wu; Lunan Huang; Chi Cheng Lee; Shin-Ming Huang; Baokai Wang; A. Bansil; Horng-Tay Jeng; Titus Neupert; A. Kaminski; Hsin Lin; Shuang Jia; M. Zahid Hasan
We report the discovery of Weyl semimetal NbAs featuring topological Fermi arc surface states.
Nature Physics | 2011
L. Andrew Wray; Su-Yang Xu; Y. Xia; David Hsieh; A. V. Fedorov; Yew San Hor; R. J. Cava; A. Bansil; Hsin Lin; M. Zahid Hasan
Topological insulators embody a state of bulk matter characterized by spin-momentum-locked surface states that span the bulk bandgap. This highly unusual surface spin environment provides a rich ground for uncovering new phenomena. Understanding the response of a topological surface to strong Coulomb perturbations represents a frontier in discovering the interacting and emergent many-body physics of topological surfaces. Here we present the first controlled study of topological insulator surfaces under Coulomb and magnetic perturbations. We have used time-resolved deposition of iron, with a large Coulomb charge and significant magnetic moment, to systematically modify the topological spin structure of the Bi_2Se_3 surface. We observe that such perturbation leads to the creation of odd multiples of Dirac fermions and that magnetic interactions break time-reversal symmetry in the presence of band hybridizations. We present a theoretical model to account for the observed electron dynamics of the topological surface. Taken collectively, these results are a critical guide in controlling electron mobility and quantum behaviour of topological surfaces, not only for device applications but also in setting the stage for creating exotic particles such as axions or imaging monopoles on the surface.
Nature Communications | 2014
Madhab Neupane; Su Yang Xu; Raman Sankar; Nasser Alidoust; Guang Bian; Chang Liu; Ilya Belopolski; Tay-Rong Chang; Horng-Tay Jeng; Hsin Lin; A. Bansil; Fangcheng Chou; M. Zahid Hasan
Symmetry-broken three-dimensional (3D) topological Dirac semimetal systems with strong spin-orbit coupling can host many exotic Hall-like phenomena and Weyl fermion quantum transport. Here, using high-resolution angle-resolved photoemission spectroscopy, we performed systematic electronic structure studies on Cd3As2, which has been predicted to be the parent material, from which many unusual topological phases can be derived. We observe a highly linear bulk band crossing to form a 3D dispersive Dirac cone projected at the Brillouin zone centre by studying the (001)-cleaved surface. Remarkably, an unusually high in-plane Fermi velocity up to 1.5×10(6) ms(-1) is observed in our samples, where the mobility is known up to 40,000 cm2 V(-1) s(-1), suggesting that Cd3As2 can be a promising candidate as an anisotropic-hypercone (three-dimensional) high spin-orbit analogue of 3D graphene. Our discovery of the Dirac-like bulk topological semimetal phase in Cd3As2 opens the door for exploring higher dimensional spin-orbit Dirac physics in a real material.Understanding the spin-texture behavior of boundary modes in ultrathin topological insulator films is critically essential for the design and fabrication of functional nanodevices. Here by using spin-resolved photoemission spectroscopy with p-polarized light in topological insulator Bi2Se3 thin films, we report tunneling-dependent evolution of spin configuration in topological insulator thin films across the metal-toinsulator transition. We observe strongly binding energyand wavevector-dependent spin polarization for the topological surface electrons in the ultra-thin gapped-Diraccone limit. The polarization decreases significantly with enhanced tunneling realized systematically in thin insulating films, whereas magnitude of the polarization saturates to the bulk limit faster at larger wavevectors in thicker metallic films. We present a theoretical model which captures this delicate relationship between quantum tunneling and Fermi surface spin polarization. Our high-resolution spin-based spectroscopic results suggest that the polarization current can be tuned to zero in thin insulating films forming the basis for a future spin-switch nano-device.
Annual Review of Condensed Matter Physics | 2011
M. Zahid Hasan; Joel E. Moore
Topological insulators in three dimensions are nonmagnetic insulators that possess metallic surface states (SSs) as a consequence of the nontrivial topology of electronic wavefunctions in the bulk of the material. They are the first known examples of topological order in bulk solids. We review the basic phenomena and experimental history, starting with the observation of topological insulator behavior in BixSb1−x by angle and spin-resolved photoemission spectroscopy (spin-ARPES) and continuing through measurements on other materials and by other probes. A self-contained introduction to the single-particle theory is then given, followed by the many-particle definition of a topological insulator as a material with quantized magnetoelectric polarizability. The last section reviews recent work on strongly correlated topological insulators and new effects that arise from the proximity effect between a topological insulator and a superconductor. Although this article is not intended to be a comprehensive review...
Science | 2015
Su Yang Xu; Chang Liu; Satya Kushwaha; Raman Sankar; Jason W. Krizan; Ilya Belopolski; Madhab Neupane; Guang Bian; Nasser Alidoust; Tay-Rong Chang; Horng-Tay Jeng; Cheng Yi Huang; Wei Feng Tsai; Hsin Lin; Pavel Shibayev; Fang Cheng Chou; R. J. Cava; M. Zahid Hasan
Nailing down the topology of a semimetal Topological insulators are exotic materials that have a conducting surface state that can withstand certain types of material imperfection. Theoreticians have predicted a different kind of surface state in related three-dimensional topological Dirac semimetals, which do not have an energy gap in the band structure of the bulk. Xu et al. used photoemission spectroscopy to map out the band structure of the material Na3Bi and detected the predicted surface state. Their results may lead to further insights into the physics of topological matter. Science, this issue p. 294 Angle-resolved photoemission spectroscopy is used to map out the band structure of Na3Bi and detect its exotic surface state. The topology of the electronic structure of a crystal is manifested in its surface states. Recently, a distinct topological state has been proposed in metals or semimetals whose spin-orbit band structure features three-dimensional Dirac quasiparticles. We used angle-resolved photoemission spectroscopy to experimentally observe a pair of spin-polarized Fermi arc surface states on the surface of the Dirac semimetal Na3Bi at its native chemical potential. Our systematic results collectively identify a topological phase in a gapless material. The observed Fermi arc surface states open research frontiers in fundamental physics and possibly in spintronics.
Nature Communications | 2016
Guang Bian; Tay-Rong Chang; Raman Sankar; Su Yang Xu; Hao Zheng; Titus Neupert; Ching Kai Chiu; Shin-Ming Huang; Guoqing Chang; Ilya Belopolski; Daniel S. Sanchez; Madhab Neupane; Nasser Alidoust; Chang Liu; Bao Kai Wang; Chi Cheng Lee; Horng-Tay Jeng; Chenglong Zhang; Zhujun Yuan; Shuang Jia; A. Bansil; Fangcheng Chou; Hsin Lin; M. Zahid Hasan
Topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems.
Nature Communications | 2016
Cheng Long Zhang; Su Yang Xu; Ilya Belopolski; Zhujun Yuan; Ziquan Lin; Bingbing Tong; Guang Bian; Nasser Alidoust; Chi Cheng Lee; Shin-Ming Huang; Tay-Rong Chang; Guoqing Chang; Chuang Han Hsu; Horng-Tay Jeng; Madhab Neupane; Daniel S. Sanchez; Hao Zheng; Junfeng Wang; Hsin Lin; Chi Zhang; Hai-Zhou Lu; Shun-Qing Shen; Titus Neupert; M. Zahid Hasan; Shuang Jia
Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance under parallel electric and magnetic fields, that is, unlike most metals whose resistivity increases under an external magnetic field, we observe that our high mobility TaAs samples become more conductive as a magnetic field is applied along the direction of the current for certain ranges of the field strength. We present systematically detailed data and careful analyses, which allow us to exclude other possible origins of the observed negative magnetoresistance. Our transport data, corroborated by photoemission measurements, first-principles calculations and theoretical analyses, collectively demonstrate signatures of the Weyl fermion chiral anomaly in the magneto-transport of TaAs.
Nature Physics | 2014
Yang Xu; I. Miotkowski; Chang Liu; Jifa Tian; Hyoungdo Nam; Nasser Alidoust; Jiuning Hu; Chih-Kang Shih; M. Zahid Hasan; Yong P. Chen
Experimentalists have observed the predicted half-integer quantum Hall effect using the topological insulator BiSbTeSe2, which exhibits topological surface states at room temperature, with each surface contributing a half quantum of Hall conductance.