Maarten F. Heringa
Paul Scherrer Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maarten F. Heringa.
Environmental Research Letters | 2011
Torsten Tritscher; Z. Jurányi; M. Martin; R. Chirico; M. Gysel; Maarten F. Heringa; P. F. DeCarlo; B. Sierau; André S. H. Prévôt; E. Weingartner; Urs Baltensperger
Soot particles are an important component of atmospheric aerosol and their interaction with water is important for their climate effects. The hygroscopicity of fresh and photochemically aged soot and secondary organic aerosol (SOA) from diesel passenger car emissions was studied under atmospherically relevant conditions in a smog chamber at sub-and supersaturation of water vapor. Fresh soot particles show no significant hygroscopic growth nor cloud condensation nucleus (CCN) activity. Ageing by condensation of SOA formed by photooxidation of the volatile organic carbon (VOC) emission leads to increased water uptake and CCN activity as well as to a compaction of the initially non-spherical soot particles when exposed to high relative humidity (RH). It is important to consider the latter effect for the interpretation of mobility based measurements. The vehicle with oxidation catalyst (EURO3) emits much fewer VOCs than the vehicle without after-treatment (EURO2). Consequently, more SOA is formed for the latter, resulting in more pronounced effects on particle hygroscopicity and CCN activity. Nevertheless, the aged soot particles did not reach the hygroscopicity of pure SOA particles formed from diesel VOC emissions, which are similarly hygroscopic (0.06 < κH − TDMA < 0.12 and 0.09 < κCCN < 0.14) as SOA from other precursor gases investigated in previous studies.
Environmental Science & Technology | 2010
Branka Miljevic; Maarten F. Heringa; Alejandro Keller; Nickolas K. Meyer; J. Good; A. Lauber; P. F. DeCarlo; Kathryn E. Fairfull-Smith; T. Nussbaumer; Heinz Burtscher; André S. H. Prévôt; U. Baltensperger; Steven E. Bottle; Zoran Ristovski
This study reports the potential toxicological impact of particles produced during biomass combustion by an automatic pellet boiler and a traditional logwood stove under various combustion conditions using a novel profluorescent nitroxide probe, BPEAnit. This probe is weakly fluorescent but yields strong fluorescence emission upon radical trapping or redox activity. Samples were collected by bubbling aerosol through an impinger containing BPEAnit solution, followed by fluorescence measurement. The fluorescence of BPEAnit was measured for particles produced during various combustion phases: at the beginning of burning (cold start), stable combustion after refilling with the fuel (warm start), and poor burning conditions. For particles produced by the logwood stove under cold-start conditions, significantly higher amounts of reactive species per unit of particulate mass were observed compared to emissions produced during a warm start. In addition, sampling of logwood burning emissions after passing through a thermodenuder at 250 degrees C resulted in an 80-100% reduction of the fluorescence signal of the BPEAnit probe, indicating that the majority of reactive species were semivolatile. Moreover, the amount of reactive species showed a strong correlation with the amount of particulate organic material. This indicates the importance of semivolatile organics in particle-related toxicity. Particle emissions from the pellet boiler, although of similar mass concentration, were not observed to lead to an increase in fluorescence signal during any of the combustion phases.
Environmental Science & Technology | 2012
Maarten F. Heringa; P. F. DeCarlo; R. Chirico; Adrian Lauber; A. Doberer; Jürgen Good; Thomas Nussbaumer; Alejandro Keller; Heinz Burtscher; A. Richard; Branka Miljevic; André S. H. Prévôt; Urs Baltensperger
Primary emissions from a log wood burner and a pellet boiler were characterized by online measurements of the organic aerosol (OA) using a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and of black carbon (BC). The OA and BC concentrations measured during the burning cycle of the log wood burner, batch wise fueled with wood logs, were highly variable and generally dominated by BC. The emissions of the pellet burner had, besides inorganic material, a high fraction of OA and a minor contribution of BC. However, during artificially induced poor burning BC was the dominating species with ∼80% of the measured mass. The elemental O:C ratio of the OA was generally found in the range of 0.2-0.5 during the startup phase or after reloading of the log wood burner. During the burnout or smoldering phase, O:C ratios increased up to 1.6-1.7, which is similar to the ratios found for the pellet boiler during stable burning conditions and higher than the O:C ratios observed for highly aged ambient OA. The organic emissions of both burners have a very similar H:C ratio at a given O:C ratio and therefore fall on the same line in the Van Krevelen diagram.
Analytica Chimica Acta | 2012
M. Clairotte; Thomas Adam; R. Chirico; B. Giechaskiel; U. Manfredi; M. Elsasser; Martin Sklorz; P. F. DeCarlo; Maarten F. Heringa; Ralf Zimmermann; Giorgio Martini; A. Krasenbrink; A. Vicet; E. Tournié; André S. H. Prévôt; C. Astorga
Two-stroke mopeds are a popular and convenient mean of transport in particular in the highly populated cities. These vehicles can emit potentially toxic gaseous and aerosol pollutants due to their engine technology. The legislative measurements of moped emissions are based on offline methods; however, the online characterization of gas and particulate phases offers great possibilities to understand aerosol formation mechanism and to adapt future emission standards. The purpose of this work was to study the emission behavior of two mopeds complying with different European emission standards (EURO-1 and EURO-2). A sophisticated set of online analyzers was applied to simultaneously monitor the gas phase and particulate phase of exhaust on a real time basis. The gaseous emission was analyzed with a high resolution Fourier transform infrared spectrometer (FTIR; nitrogen species) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-ToF-MS; polycyclic aromatic hydrocarbons: PAH), whereas the particulate phase was chemically characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS; organic, nitrate and chloride aerosol) and a multiangle absorption photometer (MAAP; black carbon). The physical characterization of the aerosol was carried out with a condensation particle counter (CPC; particle number concentration) and a fast mobility particle sizer (FMPS; size distribution in real time). In order to extract underlying correlation between gas and solid emissions, principal component analysis was applied to the comprehensive online dataset. Multivariate analysis highlighted the considerable effect of the exhaust temperature on the particles and heavy PAH emissions. The results showed that the after-treatment used to comply with the latest EURO-2 emission standard may be responsible for the production of more potentially harmful particles compared to the EURO-1 moped emissions.
Analytical Chemistry | 2011
Thomas Adam; R. Chirico; M. Clairotte; M. Elsasser; U. Manfredi; Giorgio Martini; Martin Sklorz; Thorsten Streibel; Maarten F. Heringa; P. F. DeCarlo; U. Baltensperger; G. De Santi; A. Krasenbrink; Ralf Zimmermann; André S. H. Prévôt; C. Astorga
The European Commission recently established a novel test facility for heavy-duty vehicles to enhance more sustainable transport. The facility enables the study of energy efficiency of various fuels/scenarios as well as the chemical composition of evolved exhaust emissions. Sophisticated instrumentation for real-time analysis of the gas and particulate phases of exhaust has been implemented. Thereby, gas-phase characterization was carried out by a Fourier transform infrared spectrometer (FT-IR; carbonyls, nitrogen-containing species, small hydrocarbons) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-TOFMS; monocyclic and polycyclic aromatic hydrocarbons). For analysis of the particulate phase, a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS; organic matter, chloride, nitrate), a condensation particle counter (CPC; particle number), and a multiangle absorption photometer (MAAP; black carbon) were applied. In this paper, the first application of the new facility in combination with the described instruments is presented, whereby a medium-size truck was investigated by applying different driving cycles. The goal was simultaneous chemical characterization of a great variety of gaseous compounds and particulate matter in exhaust on a real-time basis. The time-resolved data allowed new approaches to view the results; for example, emission factors were normalized to time-resolved consumption of fuel and were related to emission factors evolved during high speeds. Compounds could be identified that followed the fuel consumption, others showed very different behavior. In particular, engine cold start, engine ignition (unburned fuel), and high-speed events resulted in unique emission patterns.
Journal of Physical Chemistry A | 2016
Maarten F. Heringa; Jay G. Slowik; André S. H. Prévôt; Urs Baltensperger; Patrick Hemberger; Andras Bodi
Adipic acid, a model compound for oxygenated organic aerosol, has been studied at the VUV beamline of the Swiss Light Source. Internal energy selected cations were prepared by threshold photoionization using vacuum ultraviolet synchrotron radiation and imaging photoelectron photoion coincidence spectroscopy (iPEPICO). The threshold photoelectron spectrum yields a vertical ionization energy (IE) of 10.5 eV, significantly above the calculated adiabatic IE of 8.6 eV. The cationic minimum is accessible after vertical ionization by H-transfer from one of the γ-carbons to a carbonyl oxygen and is sufficiently energetic to decay by water loss at the ionization onset. The slope of the breakdown curves, quantum chemical calculations, and selective deuteration of the carboxylic hydrogens establish the dissociative photoionization mechanism. After ionization, one γ-methylene hydrogen and the two carboxylic hydrogens are randomized prior to H2O loss. On the basis of the deuteration degree in the H2O + CO-loss product at higher energies, a direct water-loss channel without complete randomization also exists. The breakdown diagram and center of gravity of the H2O + CO-loss peak were modeled to obtain 0 K appearance energies of 10.77, 10.32, and 11.53 eV for H2O + CO loss, CH2COOH loss, and H2O + CH2COOH loss from adipic acid. These agree well with the CBS-QB3 calculated values of 10.68, 10.45, and 11.57 eV, respectively, which shows that threshold photoionization can yield energetics data as long as the dissociation is statistical, even when the parent ion cannot be observed. The results can be used as a starting point for a deeper understanding of the ionization and low-energy fragmentation of organic aerosol components.
European Journal of Mass Spectrometry | 2010
Urs Baltensperger; R. Chirico; P. F. DeCarlo; Josef Dommen; Kathrin Gaeggeler; Maarten F. Heringa; Mingli Li; André S. H. Prévôt; M. Rami Alfarra; Deborah S. Gross; Markus Kalberer
Atmospheric aerosol particles consist of a highly complex mixture of thousands of different compounds. Mass spectrometric techniques are well suited for the analysis of these particles, with each method of analysis having specific advantages and disadvantages. On-line techniques offer high time resolution and thus allow for the investigation of rapidly changing signals. They typically measure either single particles or the average non-refractory submicrometer aerosol. Off-line techniques are often coupled to chromatography or another technique separating for a specific property, which enhances their resolving power. Ultra-high resolution mass spectrometry allows for an unambiguous assignment of the elemental composition throughout the majority of the mass range typically measured in ambient aerosol samples, i.e. up to about m/z 400–600. The quantitative determination of individual compounds, or of classes of compounds, remains an important, but often unresolved, topic. Examples of applications of various mass spectrometric techniques are presented, both from laboratory and field studies.
Environmental Science & Technology | 2015
Claudia Mohr; P. F. DeCarlo; Maarten F. Heringa; R. Chirico; R. Richter; Monica Crippa; Xavier Querol; Urs Baltensperger; André S. H. Prévôt
The spatial distribution of PM1 components in the Barcelona metropolitan area was investigated using on-road mobile measurements of atmospheric particle- and gas-phase compounds during the DAURE campaign in March 2009. Positive matrix factorization (PMF) applied to organic aerosol (OA) data yielded 5 factors: hydrocarbon-like OA (HOA), cooking OA (COA), biomass burning OA (BBOA), and low volatility and semivolatile oxygenated OA (LV-OOA and SV-OOA). The area under investigation (∼500 km(2)) was divided into six zones (city center, harbor, industrial area, precoastal depression, 2 mountain ranges) for measurements and data analysis. Mean zonal OA concentrations are 4.9-9.5 μg m(-3). The area is heavily impacted by local primary emissions (HOA 14-38%, COA 10-18%, BBOA 10-12% of OA); concentrations of traffic-related components, especially black carbon, are biased high due to the on-road nature of the measurements. The formation of secondary OA adds more than half of the OA burden outside the city center (SV-OOA 14-40%, LV-OOA 17-42% of OA). A case study of one measurement drive from the shore to the precoastal mountain range furthest downwind of the city center indicates the importance of nonfossil over anthropogenic secondary OA based on OA/CO.
ChemPhysChem | 2017
Maarten F. Heringa; Jay G. Slowik; Maximilian Goldmann; Ruth Signorell; Patrick Hemberger; Andras Bodi
The valence threshold photoionization of oleic acid has been studied using synchrotron VUV radiation and imaging photoelectron photoion coincidence (iPEPICO) spectroscopy. An oleic acid aerosol beam was impacted on a copper thermodesorber, heated to 130 °C, to evaporate the particles quantitatively. Upon threshold photoionization, oleic acid produces the intact parent ion first, followed by dehydration at higher energies. Starting at ca. 10 eV, a large number of fragment ions slowly rise suggesting several fragmentation coordinates with quasi-degenerate activation energies. However, water loss is the dominant low-energy dissociation channel, and it is shown to be closely related to the unsaturated carbon chain. In the lowest-barrier process, one of the four allylic hydrogen atoms is transferred to the carboxyl group to form the leaving water molecule and a cyclic ketone fragment ion. A statistical model to analyze the breakdown diagram and measured rate constants yields a 0 K appearance energy of 9.77 eV, which can be compared with the density functional theory result of 9.19 eV. Alternative H-transfer steps yielding a terminal C=O group are ruled out based on energetics and kinetics arguments. Some of the previous photoionization mass spectrometric studies also reported 2 amu and 26 amu loss fragment ions, corresponding to hydrogen and acetylene loss. We could not identify such peaks in the mass spectrum of oleic acid.
Schweizerische Zeitschrift Fur Forstwesen | 2013
Urs Baltensperger; Emily A. Bruns; Josef Dommen; Imad El Haddad; Maarten F. Heringa; André S. H. Prévôt; Jay G. Slowik; E. Weingartner; Christoph Hueglin; Hanna Herich; Alejandro Keller; Heinz Burtscher; Thomas Heck; Nickolas K. Meyer
Wood combustion: a substantial source of airborne particulate matter in Switzerland Wood is a renewable energy source. Wood combustion for heating purposes therefore helps in reducing CO2 emissions. However, it often results in high emissions of particulate matter (PM) which includes both black carbon (BC) and organic carbon (OC). PM has adverse health effects and should therefore be minimized. This paper reports on the latest methods to quantify the contribution of wood combustion to PM load and gives values for PM, BC, and OC from wood combustion at a number of different sites in Switzerland. State of the art methods to characterize emissions are presented and examples are given. It is shown that a major fraction of the emissions stems from small wood stoves, where the emissions are especially high during the starting phase. In addition, these small furnaces emit large amounts of gases which are rapidly oxidized and form secondary aerosols in the atmosphere. Improvements in the emissions of small wood s...