Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maarten Holkers is active.

Publication


Featured researches published by Maarten Holkers.


Nucleic Acids Research | 2013

Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells.

Maarten Holkers; Ignazio Maggio; Jin Liu; Josephine M. Janssen; Francesca Miselli; Claudio Mussolino; Toni Cathomen; Manuel A. F. V. Gonçalves

The array of genome editing strategies based on targeted double-stranded DNA break formation have recently been enriched through the introduction of transcription activator-like type III effector (TALE) nucleases (TALENs). To advance the testing of TALE-based approaches, it will be crucial to deliver these custom-designed proteins not only into transformed cell types but also into more relevant, chromosomally stable, primary cells. Viral vectors are among the most effective gene transfer vehicles. Here, we investigated the capacity of human immunodeficiency virus type 1- and adenovirus-based vectors to package and deliver functional TALEN genes into various human cell types. To this end, we attempted to assemble particles of these two vector classes, each encoding a monomer of a TALEN pair targeted to a bipartite sequence within the AAVS1 ‘safe harbor’ locus. Vector DNA analyses revealed that adenoviral vectors transferred intact TALEN genes, whereas lentiviral vectors failed to do so, as shown by their heterogeneously sized proviruses in target cells. Importantly, adenoviral vector-mediated TALEN gene delivery resulted in site-specific double-stranded DNA break formation at the intended AAVS1 target site at similarly high levels in both transformed and non-transformed cells. In conclusion, we demonstrate that adenoviral, but not lentiviral, vectors constitute a valuable TALEN gene delivery platform.


Nature Methods | 2014

Adenoviral vector DNA for accurate genome editing with engineered nucleases

Maarten Holkers; Ignazio Maggio; Sara F D Henriques; Josephine M. Janssen; Toni Cathomen; Manuel A. F. V. Gonçalves

Engineered sequence-specific nucleases and donor DNA templates can be customized to edit mammalian genomes via the homologous recombination (HR) pathway. Here we report that the nature of the donor DNA greatly affects the specificity and accuracy of the editing process following site-specific genomic cleavage by transcription activator–like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 nucleases. By applying these designer nucleases together with donor DNA delivered as protein-capped adenoviral vector (AdV), free-ended integrase-defective lentiviral vector or nonviral vector templates, we found that the vast majority of AdV-modified human cells underwent scarless homology-directed genome editing. In contrast, a significant proportion of cells exposed to free-ended or to covalently closed HR substrates were subjected to random and illegitimate recombination events. These findings are particularly relevant for genome engineering approaches aiming at high-fidelity genetic modification of human cells.


Scientific Reports | 2015

Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells

Ignazio Maggio; Maarten Holkers; Jin Liu; Josephine M. Janssen; Xiaoyu Chen; Manuel A. F. V. Gonçalves

CRISPR/Cas9-derived RNA-guided nucleases (RGNs) are DNA targeting systems, which are rapidly being harnessed for gene regulation and gene editing purposes in model organisms and cell lines. As bona fide gene delivery vehicles, viral vectors may be particularly fit to broaden the applicability of RGNs to other cell types including dividing and quiescent primary cells. Here, the suitability of adenoviral vectors (AdVs) for delivering RGN components into various cell types is investigated. We demonstrate that AdVs, namely second-generation fiber-modified AdVs encoding Cas9 or single guide RNA (gRNA) molecules addressing the Cas9 nuclease to the AAVS1 “safe harbor” locus or to a recombinant model allele can be produced to high-titers (up to 20 × 1010 transducing units/ml). Importantly, AdV-mediated transduction of gRNA:Cas9 ribonucleoprotein complexes into transformed and non-transformed cells yields rates of targeted mutagenesis similar to or approaching those achieved by isogenic AdVs encoding TALENs targeting the same AAVS1 chromosomal region. RGN-induced gene disruption frequencies in the various cell types ranged from 18% to 65%. We conclude that AdVs constitute a valuable platform for introducing RGNs into human somatic cells regardless of their transformation status. This approach should aid investigating the potential and limitations of RGNs in numerous experimental settings.


Molecular Therapy | 2008

Genetic complementation of human muscle cells via directed stem cell fusion.

Manuel A. F. V. Gonçalves; Jim Swildens; Maarten Holkers; Anjali Narain; Gijsbert P. van Nierop; Marloes J.M. van de Watering; Shoshan Knaän-Shanzer; Antoine A.F. de Vries

Duchenne muscular dystrophy (DMD) is caused by mutations in the X chromosome-linked DMD gene, which encodes the sarcolemma-stabilizing protein-dystrophin. Initial attempts at DMD therapy deployed muscle progenitor cells from healthy donors. The utilization of these cells is, however, hampered by their immunogenicity, while those from DMD patients are scarce and display limited ex vivo replication. Nonmuscle cells with myogenic capacity may offer valuable alternatives especially if, to allow autologous transplantation, they are amenable to genetic intervention. As a paradigm for therapeutic gene transfer by heterotypic cell fusion we are investigating whether human mesenchymal stem cells (hMSCs) can serve as donors of recombinant DMD genes for recipient human muscle cells. Here, we show that forced MyoD expression in hMSCs greatly increases their tendency to participate in human myotube formation turning them into improved DNA delivery vehicles. Efficient loading of hMSCs with recombinant DMD was achieved through a new tropism-modified high-capacity adenoviral (hcAd) vector directing striated muscle-specific synthesis of full-length dystrophin. This study introduces the principle of genetic complementation of gene-defective cells via directed cell fusion and provides an initial framework to test whether transient MyoD synthesis in autologous, gene-corrected hMSCs increases their potential for treating DMD and, possibly, other muscular dystrophies.


Nucleic Acids Research | 2009

Stimulation of homology-directed gene targeting at an endogenous human locus by a nicking endonuclease

Gijsbert P. van Nierop; Antoine A.F. de Vries; Maarten Holkers; Krijn R. Vrijsen; Manuel A. F. V. Gonçalves

Homologous recombination (HR) is a highly accurate mechanism of DNA repair that can be exploited for homology-directed gene targeting. Since in most cell types HR occurs very infrequently (∼10−6 to 10−8), its practical application has been largely restricted to specific experimental systems that allow selection of the few cells that become genetically modified. HR-mediated gene targeting has nonetheless revolutionized genetics by greatly facilitating the analysis of mammalian gene function. Recent studies showed that generation of double-strand DNA breaks at specific loci by designed endonucleases greatly increases the rate of homology-directed gene repair. These findings opened new perspectives for HR-based genome editing in higher eukaryotes. Here, we demonstrate by using donor DNA templates together with the adeno-associated virus (AAV) Rep78 and Rep68 proteins that sequence- and strand-specific cleavage at a native, predefined, human locus can also greatly enhance homology-directed gene targeting. Our findings argue for the development of other strategies besides direct induction of double-strand chromosomal breaks to achieve efficient and heritable targeted genetic modification of cells and organisms. Finally, harnessing the cellular HR pathway through Rep-mediated nicking expands the range of strategies that make use of AAV elements to bring about stable genetic modification of human cells.


PLOS ONE | 2008

Targeted Chromosomal Insertion of Large DNA into the Human Genome by a Fiber-Modified High-Capacity Adenovirus-Based Vector System

Manuel A. F. V. Gonçalves; Maarten Holkers; Gijsbert P. van Nierop; Roeland Wieringa; Maria G. Pau; Antoine A.F. de Vries

A prominent goal in gene therapy research concerns the development of gene transfer vehicles that can integrate exogenous DNA at specific chromosomal loci to prevent insertional oncogenesis and provide for long-term transgene expression. Adenovirus (Ad) vectors arguably represent the most efficient delivery systems of episomal DNA into eukaryotic cell nuclei. The most advanced recombinant Ads lack all adenoviral genes. This renders these so-called high-capacity (hc) Ad vectors less cytotoxic/immunogenic than those only deleted in early regions and creates space for the insertion of large/multiple transgenes. The versatility of hcAd vectors is been increased by capsid modifications to alter their tropism and by the incorporation into their genomes of sequences promoting chromosomal insertion of exogenous DNA. Adeno-associated virus (AAV) can insert its genome into a specific human locus designated AAVS1. Trans- and cis-acting elements needed for this reaction are the AAV Rep78/68 proteins and Rep78/68-binding sequences, respectively. Here, we describe the generation, characterization and testing of fiber-modified dual hcAd/AAV hybrid vectors (dHVs) containing both these elements. Due to the inhibitory effects of Rep78/68 on Ad-dependent DNA replication, we deployed a recombinase-inducible gene switch to repress Rep68 synthesis during vector rescue and propagation. Flow cytometric analyses revealed that rep68-positive dHVs can be produced similarly well as rep68-negative control vectors. Western blot experiments and immunofluorescence microscopy analyses demonstrated transfer of recombinase-dependent rep68 genes into target cells. Studies in HeLa cells and in the dystrophin-deficient myoblasts from a Duchenne muscular dystrophy (DMD) patient showed that induction of Rep68 synthesis in cells transduced with fiber-modified and rep68-positive dHVs leads to increased stable transduction levels and AAVS1-targeted integration of vector DNA. These results warrant further investigation especially considering the paucity of vector systems allowing permanent phenotypic correction of patient-own cell types with large DNA (e.g. recombinant full-length DMD genes).


Human Gene Therapy Methods | 2013

Histone Deacetylase Inhibition Rescues Gene Knockout Levels Achieved with Integrase-Defective Lentiviral Vectors Encoding Zinc-Finger Nucleases

Laetitia P.L. Pelascini; Ignazio Maggio; Jin Liu; Maarten Holkers; Toni Cathomen; Manuel A. F. V. Gonçalves

Zinc-finger nucleases (ZFNs) work as dimers to induce double-stranded DNA breaks (DSBs) at predefined chromosomal positions. In doing so, they constitute powerful triggers to edit and to interrogate the function of genomic sequences in higher eukaryotes. A preferred route to introduce ZFNs into somatic cells relies on their cotransduction with two integrase-defective lentiviral vectors (IDLVs) each encoding a monomer of a functional heterodimeric pair. The episomal nature of IDLVs diminishes the risk of genotoxicity and ensures the strict transient expression profile necessary to minimize deleterious effects associated with long-term ZFN activity. However, by deploying IDLVs and conventional lentiviral vectors encoding HPRT1- or eGFP-specific ZFNs, we report that DSB formation at target alleles is limited after IDLV-mediated ZFN transfer. This IDLV-specific underperformance stems, to a great extent, from the activity of chromatin-remodeling histone deacetylases (HDACs). Importantly, the prototypic and U.S. Food and Drug Administration-approved inhibitors of metal-dependent HDACs, trichostatin A and vorinostat, respectively, did not hinder illegitimate recombination-mediated repair of targeted chromosomal DSBs. This allowed rescuing IDLV-mediated site-directed mutagenesis to levels approaching those achieved by using their isogenic chromosomally integrating counterparts. Hence, HDAC inhibition constitutes an efficacious expedient to incorporate in genome-editing strategies based on transient IDLV-mediated ZFN expression. Finally, we compared two of the most commonly used readout systems to measure targeted gene knockout activities based on restriction and mismatch-sensitive endonucleases. These experiments indicate that these enzymatic assays display a similar performance.


Nucleic Acids Research | 2012

Nonspaced inverted DNA repeats are preferential targets for homology-directed gene repair in mammalian cells

Maarten Holkers; Antoine A.F. de Vries; Manuel A. F. V. Gonçalves

DNA repeats constitute potential sites for the nucleation of secondary structures such as hairpins and cruciforms. Studies performed mostly in bacteria and yeast showed that these noncanonical DNA structures are breakage-prone, making them candidate targets for cellular DNA repair pathways. Possible culprits for fragility at repetitive DNA sequences include replication and transcription as well as the action of structure–specific nucleases. Despite their patent biological relevance, the parameters governing DNA repeat-associated chromosomal transactions remain ill-defined. Here, we established an episomal recombination system based on donor and acceptor complementary DNA templates to investigate the role of direct and inverted DNA repeats in homologous recombination (HR) in mammalian cells. This system allowed us also to ascertain in a stringent manner the impact of repetitive sequence replication on homology-directed gene repair. We found that nonspaced DNA repeats can, per se, engage the HR pathway of the cell and that this process is primarily dependent on their spacing and relative arrangement (i.e. parallel or antiparallel) rather than on their sequence. Indeed, our data demonstrate that contrary to direct and spaced inverted repeats, nonspaced inverted repeats are intrinsically recombinogenic motifs in mammalian cells lending experimental support to their role in genome dynamics in higher eukaryotes.


PLOS ONE | 2010

Rapid and Sensitive Lentivirus Vector-Based Conditional Gene Expression Assay to Monitor and Quantify Cell Fusion Activity

Manuel A. F. V. Gonçalves; Josephine M. Janssen; Maarten Holkers; Antoine A.F. de Vries

Cell-to-cell fusion is involved in multiple fundamental biological processes. Prominent examples include osteoclast and giant cell formation, fertilization and skeletal myogenesis which involve macrophage, sperm-egg and myoblast fusion, respectively. Indeed, the importance of cell fusion is underscored by the wide range of homeostatic as well as pathologic processes in which it plays a key role. Therefore, rapid and sensitive systems to trace and measure cell fusion events in various experimental systems are in demand. Here, we introduce a bipartite cell fusion monitoring system based on a genetic switch responsive to the site-specific recombinase FLP. To allow flexible deployment in both dividing as well as non-dividing cell populations, inducer and reporter modules were incorporated in lentivirus vector particles. Moreover, the recombinase-inducible transcription units were designed in such a way as to minimize basal activity and chromosomal position effects in the “off” and “on” states, respectively. The lentivirus vector-based conditional gene expression assay was validated in primary human mesenchymal stem cells and in a differentiation model based on muscle progenitor cells from a Duchenne muscular dystrophy patient using reporter genes compatible with live- and single-cell imaging and with whole population measurements. Using the skeletal muscle cell differentiation model, we showed that the new assay displays low background activity, a 2-log dynamic range, high sensitivity and is amenable to the investigation of cell fusion kinetics. The utility of the bipartite cell fusion monitoring system was underscored by a study on the impact of drug- and RNAi-mediated p38 MAPK inhibition on human myocyte differentiation. Finally, building on the capacity of lentivirus vectors to readily generate transgenic animals the present FLP-inducible system should be adaptable, alone or together with Cre/loxP-based assays, to cell lineage tracing and conditional gene manipulation studies in vivo.


Nucleic Acids Research | 2012

Concerted nicking of donor and chromosomal acceptor DNA promotes homology-directed gene targeting in human cells

Manuel A. F. V. Gonçalves; Gijsbert P. van Nierop; Maarten Holkers; Antoine A.F. de Vries

The exchange of genetic information between donor and acceptor DNA molecules by homologous recombination (HR) depends on the cleavage of phosphodiester bonds. Although double-stranded and single-stranded DNA breaks (SSBs) have both been invoked as triggers of HR, until very recently the focus has been primarily on the former type of DNA lesions mainly due to the paucity of SSB-based recombination models. Here, to investigate the role of nicked DNA molecules as HR-initiating substrates in human somatic cells, we devised a homology-directed gene targeting system based on exogenous donor and chromosomal target DNA containing recognition sequences for the adeno-associated virus sequence- and strand-specific endonucleases Rep78 and Rep68. We found that HR is greatly fostered if a SSB is not only introduced in the chromosomal acceptor but also in the donor DNA template. Our data are consistent with HR models postulating the occurrence of SSBs or single-stranded gaps in both donor and acceptor molecules during the genetic exchange process. These findings can guide the development of improved HR-based genome editing strategies in which sequence- and strand-specific endonucleolytic cleavage of the chromosomal target site is combined with that of the targeting vector.

Collaboration


Dive into the Maarten Holkers's collaboration.

Top Co-Authors

Avatar

Manuel A. F. V. Gonçalves

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Antoine A.F. de Vries

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gijsbert P. van Nierop

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ignazio Maggio

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Josephine M. Janssen

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jim Swildens

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jin Liu

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shoshan Knaän-Shanzer

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge