Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maarten Hoogenkamp is active.

Publication


Featured researches published by Maarten Hoogenkamp.


Genes & Development | 2008

PU.1 expression is modulated by the balance of functional sense and antisense RNAs regulated by a shared cis-regulatory element

Alexander K. Ebralidze; Florence C. Guibal; Ulrich Steidl; Pu Zhang; Sang Hoon Lee; Boris Bartholdy; Meritxell Alberich Jordà; Victoria Petkova; Frank Rosenbauer; Gang Huang; Tajhal Dayaram; Johanna Klupp; Karen O'Brien; Britta Will; Maarten Hoogenkamp; Katherine L. B. Borden; Constanze Bonifer; Daniel G. Tenen

The transcription factor PU.1 is an important regulator of hematopoiesis; precise expression levels are critical for normal hematopoietic development and suppression of leukemia. We show here that noncoding antisense RNAs are important modulators of proper dosages of PU.1. Antisense and sense RNAs are regulated by shared evolutionarily conserved cis-regulatory elements, and we can show that antisense RNAs inhibit PU.1 expression by modulating mRNA translation. We propose that such antisense RNAs will likely be important in the regulation of many genes and may be the reason for the large number of overlapping complementary transcripts with so far unknown function.


Blood | 2009

Early chromatin unfolding by RUNX1: a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program

Maarten Hoogenkamp; Monika Lichtinger; Hanna Krysinska; Christophe Lancrin; Deborah Clarke; Andrew J. K. Williamson; Luca Mazzarella; Richard Ingram; Helle F. Jørgensen; Amanda G. Fisher; Daniel G. Tenen; Valerie Kouskoff; Georges Lacaud; Constanze Bonifer

At the cellular level, development progresses through successive regulatory states, each characterized by their specific gene expression profile. However, the molecular mechanisms regulating first the priming and then maintenance of gene expression within one developmental pathway are essentially unknown. The hematopoietic system represents a powerful experimental model to address these questions and here we have focused on a regulatory circuit playing a central role in myelopoiesis: the transcription factor PU.1, its target gene colony-stimulating-factor 1 receptor (Csf1r), and key upstream regulators such as RUNX1. We find that during ontogeny, chromatin unfolding precedes the establishment of active histone marks and the formation of stable transcription factor complexes at the Pu.1 locus and we show that chromatin remodeling is mediated by the transient binding of RUNX1 to Pu.1 cis-elements. By contrast, chromatin reorganization of Csf1r requires prior expression of PU.1 together with RUNX1 binding. Once the full hematopoietic program is established, stable transcription factor complexes and active chromatin can be maintained without RUNX1. Our experiments therefore demonstrate how individual transcription factors function in a differentiation stage-specific manner to differentially affect the initiation versus maintenance of a developmental program.


Leukemia | 2012

Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding

Anetta Ptasinska; Salam A. Assi; D Mannari; Sally R. James; Daniel Williamson; J Dunne; Maarten Hoogenkamp; Mengchu Wu; M Care; Hesta McNeill; Pierre Cauchy; M Cullen; R M Tooze; Daniel G. Tenen; Bryan D. Young; Peter N. Cockerill; David R. Westhead; Olaf Heidenreich; Constanze Bonifer

The t(8;21) translocation fuses the DNA-binding domain of the hematopoietic master regulator RUNX1 to the ETO protein. The resultant RUNX1/ETO fusion protein is a leukemia-initiating transcription factor that interferes with RUNX1 function. The result of this interference is a block in differentiation and, finally, the development of acute myeloid leukemia (AML). To obtain insights into RUNX1/ETO-dependant alterations of the epigenetic landscape, we measured genome-wide RUNX1- and RUNX1/ETO-bound regions in t(8;21) cells and assessed to what extent the effects of RUNX1/ETO on the epigenome depend on its continued expression in established leukemic cells. To this end, we determined dynamic alterations of histone acetylation, RNA Polymerase II binding and RUNX1 occupancy in the presence or absence of RUNX1/ETO using a knockdown approach. Combined global assessments of chromatin accessibility and kinetic gene expression data show that RUNX1/ETO controls the expression of important regulators of hematopoietic differentiation and self-renewal. We show that selective removal of RUNX1/ETO leads to a widespread reversal of epigenetic reprogramming and a genome-wide redistribution of RUNX1 binding, resulting in the inhibition of leukemic proliferation and self-renewal, and the induction of differentiation. This demonstrates that RUNX1/ETO represents a pivotal therapeutic target in AML.


Molecular and Cellular Biology | 2007

A Two-Step, PU.1-Dependent Mechanism for Developmentally Regulated Chromatin Remodeling and Transcription of the c-fms Gene

Hanna Krysinska; Maarten Hoogenkamp; Richard Ingram; Nicola K. Wilson; Hiromi Tagoh; Peter Laslo; Harinder Singh; Constanze Bonifer

ABSTRACT Hematopoietic stem cells and multipotent progenitors exhibit low-level transcription and partial chromatin reorganization of myeloid cell-specific genes including the c-fms (csf1R) locus. Expression of the c-fms gene is dependent on the Ets family transcription factor PU.1 and is upregulated during myeloid differentiation, enabling committed macrophage precursors to respond to colony-stimulating factor 1. To analyze molecular mechanisms underlying the transcriptional priming and developmental upregulation of the c-fms gene, we have utilized myeloid progenitors lacking the transcription factor PU.1. PU.1 can bind to sites in both the c-fms promoter and the c-fms intronic regulatory element (FIRE enhancer). Unlike wild-type progenitors, the PU.1−/− cells are unable to express c-fms or initiate macrophage differentiation. When PU.1 was reexpressed in mutant progenitors, the chromatin structure of the c-fms promoter was rapidly reorganized. In contrast, assembly of transcription factors at FIRE, acquisition of active histone marks, and high levels of c-fms transcription occurred with significantly slower kinetics. We demonstrate that the reason for this differential activation was that PU.1 was required to promote induction and binding of a secondary transcription factor, Egr-2, which is important for FIRE enhancer activity. These data suggest that the c-fms promoter is maintained in a primed state by PU.1 in progenitor cells and that at FIRE PU.1 functions with another transcription factor to direct full activation of the c-fms locus in differentiated myeloid cells. The two-step mechanism of developmental gene activation that we describe here may be utilized to regulate gene activity in a variety of developmental pathways.


Blood | 2011

Macrophage development from HSCs requires PU.1-coordinated microRNA expression

Saeed Ghani; Pia Riemke; Jörg Schönheit; Dido Lenze; Jürgen Stumm; Maarten Hoogenkamp; Anne Karine Lagendijk; Sven Heinz; Constanze Bonifer; Jeroen Bakkers; Salim Abdelilah-Seyfried; Michael Hummel; Frank Rosenbauer

The differentiation of HSCs into myeloid lineages requires the transcription factor PU.1. Whereas PU.1-dependent induction of myeloid-specific target genes has been intensively studied, negative regulation of stem cell or alternate lineage programs remains incompletely characterized. To test for such negative regulatory events, we searched for PU.1-controlled microRNAs (miRs) by expression profiling using a PU.1-inducible myeloid progenitor cell line model. We provide evidence that PU.1 directly controls expression of at least 4 of these miRs (miR-146a, miR-342, miR-338, and miR-155) through temporally dynamic occupation of binding sites within regulatory chromatin regions adjacent to their genomic coding loci. Ectopic expression of the most robustly induced PU.1 target miR, miR-146a, directed the selective differentiation of HSCs into functional peritoneal macrophages in mouse transplantation assays. In agreement with this observation, disruption of Dicer expression or specific antagonization of miR-146a function inhibited the formation of macrophages during early zebrafish (Danio rerio) development. In the present study, we describe a PU.1-orchestrated miR program that mediates key functions of PU.1 during myeloid differentiation.


Blood | 2011

Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells

Mathias Leddin; Chiara Perrod; Maarten Hoogenkamp; Saeed Ghani; Salam A. Assi; Sven Heinz; Nicola K. Wilson; George A. Follows; Jörg Schönheit; Lena Vockentanz; Ali M. Mosammam; Wei Chen; Daniel G. Tenen; David R. Westhead; Berthold Göttgens; Constanze Bonifer; Frank Rosenbauer

The transcription factor PU.1 occupies a central role in controlling myeloid and early B-cell development, and its correct lineage-specific expression is critical for the differentiation choice of hematopoietic progenitors. However, little is known of how this tissue-specific pattern is established. We previously identified an upstream regulatory cis element whose targeted deletion in mice decreases PU.1 expression and causes leukemia. We show here that the upstream regulatory cis element alone is insufficient to confer physiologic PU.1 expression in mice but requires the cooperation with other, previously unidentified elements. Using a combination of transgenic studies, global chromatin assays, and detailed molecular analyses we present evidence that PU.1 is regulated by a novel mechanism involving cross talk between different cis elements together with lineage-restricted autoregulation. In this model, PU.1 regulates its expression in B cells and macrophages by differentially associating with cell type-specific transcription factors at one of its cis-regulatory elements to establish differential activity patterns at other elements.


Journal of Experimental Medicine | 2009

Runx proteins regulate Foxp3 expression

Ludovica Bruno; Luca Mazzarella; Maarten Hoogenkamp; Arnulf Hertweck; Bradley S. Cobb; Stephan Sauer; Marion Leleu; Yoshinori Naoe; Janice C. Telfer; Constanze Bonifer; Ichiro Taniuchi; Amanda G. Fisher; Matthias Merkenschlager

Runx proteins are essential for hematopoiesis and play an important role in T cell development by regulating key target genes, such as CD4 and CD8 as well as lymphokine genes, during the specialization of naive CD4 T cells into distinct T helper subsets. In regulatory T (T reg) cells, the signature transcription factor Foxp3 interacts with and modulates the function of several other DNA binding proteins, including Runx family members, at the protein level. We show that Runx proteins also regulate the initiation and the maintenance of Foxp3 gene expression in CD4 T cells. Full-length Runx promoted the de novo expression of Foxp3 during inducible T reg cell differentiation, whereas the isolated dominant-negative Runt DNA binding domain antagonized de novo Foxp3 expression. Foxp3 expression in natural T reg cells remained dependent on Runx proteins and correlated with the binding of Runx/core-binding factor β to regulatory elements within the Foxp3 locus. Our data show that Runx and Foxp3 are components of a feed-forward loop in which Runx proteins contribute to the expression of Foxp3 and cooperate with Foxp3 proteins to regulate the expression of downstream target genes.


Developmental Cell | 2016

Dynamic gene regulatory networks drive hematopoietic specification and differentiation.

Debbie K. Goode; Nadine Obier; M. S. Vijayabaskar; Michael Lie-A-Ling; Andrew J. Lilly; Rebecca Hannah; Monika Lichtinger; Kiran Batta; Magdalena Florkowska; Rahima Patel; Mairi Challinor; Kirstie Wallace; Jane Gilmour; Salam A. Assi; Pierre Cauchy; Maarten Hoogenkamp; David R. Westhead; Georges Lacaud; Valerie Kouskoff; Berthold Göttgens; Constanze Bonifer

Summary Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity. We present a dynamic core regulatory network model for hematopoietic specification and demonstrate its utility for the design of reprogramming experiments. Functional studies motivated by our genome-wide data uncovered a stage-specific role for TEAD/YAP factors in mammalian hematopoietic specification. Our study presents a powerful resource for studying hematopoiesis and demonstrates how such data advance our understanding of mammalian development.


Cancer Cell | 2013

Sox4 Is a Key Oncogenic Target in C/EBPα Mutant Acute Myeloid Leukemia

Hong Zhang; Meritxell Alberich-Jorda; Giovanni Amabile; Henry Yang; Philipp B. Staber; Annalisa DiRuscio; Robert S. Welner; Alexander K. Ebralidze; Junyan Zhang; Elena Levantini; Véronique Lefebvre; Ruud Delwel; Maarten Hoogenkamp; Claus Nerlov; Jörg Cammenga; Borja Saez; David T. Scadden; Constanze Bonifer; Min Ye; Daniel G. Tenen

Mutation or epigenetic silencing of the transcription factor C/EBPα is observed in ∼10% of patients with acute myeloid leukemia (AML). In both cases, a common global gene expression profile is observed, but downstream targets relevant for leukemogenesis are not known. Here, we identify Sox4 as a direct target of C/EBPα whereby its expression is inversely correlated with C/EBPα activity. Downregulation of Sox4 abrogated increased self-renewal of leukemic cells and restored their differentiation. Gene expression profiles of leukemia-initiating cells (LICs) from both Sox4 overexpression and murine C/EBPα mutant AML models clustered together but differed from other types of AML. Our data demonstrate that Sox4 overexpression resulting from C/EBPα inactivation contributes to the development of leukemia with a distinct LIC phenotype.


Cell Reports | 2014

Identification of a dynamic core transcriptional network in t(8;21) AML that regulates differentiation block and self-renewal.

Anetta Ptasinska; Salam A. Assi; Natalia Martinez-Soria; Maria Rosaria Imperato; Jason Piper; Pierre Cauchy; Anna Pickin; Sally R. James; Maarten Hoogenkamp; Dan Williamson; Mengchu Wu; Daniel G. Tenen; Sascha Ott; David R. Westhead; Peter N. Cockerill; Olaf Heidenreich; Constanze Bonifer

Summary Oncogenic transcription factors such as RUNX1/ETO, which is generated by the chromosomal translocation t(8;21), subvert normal blood cell development by impairing differentiation and driving malignant self-renewal. Here, we use digital footprinting and chromatin immunoprecipitation sequencing (ChIP-seq) to identify the core RUNX1/ETO-responsive transcriptional network of t(8;21) cells. We show that the transcriptional program underlying leukemic propagation is regulated by a dynamic equilibrium between RUNX1/ETO and RUNX1 complexes, which bind to identical DNA sites in a mutually exclusive fashion. Perturbation of this equilibrium in t(8;21) cells by RUNX1/ETO depletion leads to a global redistribution of transcription factor complexes within preexisting open chromatin, resulting in the formation of a transcriptional network that drives myeloid differentiation. Our work demonstrates on a genome-wide level that the extent of impaired myeloid differentiation in t(8;21) is controlled by the dynamic balance between RUNX1/ETO and RUNX1 activities through the repression of transcription factors that drive differentiation.

Collaboration


Dive into the Maarten Hoogenkamp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salam A. Assi

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Cauchy

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Georges Lacaud

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge