Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maarten Kamermans is active.

Publication


Featured researches published by Maarten Kamermans.


The Journal of Neuroscience | 2009

A Transient Receptor Potential-Like Channel Mediates Synaptic Transmission in Rod Bipolar Cells

Yin Shen; J. Alexander Heimel; Maarten Kamermans; Neal S. Peachey; Ronald G. Gregg; Scott Nawy

On bipolar cells are connected to photoreceptors via a sign-inverting synapse. At this synapse, glutamate binds to a metabotropic receptor which couples to the closure of a cation-selective transduction channel. The molecular identity of both the receptor and the G protein are known, but the identity of the transduction channel has remained elusive. Here, we show that the transduction channel in mouse rod bipolar cells, a subtype of On bipolar cell, is likely to be a member of the TRP family of channels. To evoke a transduction current, the metabotropic receptor antagonist LY341495 was applied to the dendrites of cells that were bathed in a solution containing the mGluR6 agonists l-AP4 or glutamate. The transduction current was suppressed by ruthenium red and the TRPV1 antagonists capsazepine and SB-366791. Furthermore, focal application of the TRPV1 agonists capsaicin and anandamide evoked a transduction-like current. The capsaicin-evoked and endogenous transduction current displayed prominent outward rectification, a property of the TRPV1 channel. To test the possibility that the transduction channel is TRPV1, we measured rod bipolar cell function in the TRPV1−/− mouse. The ERG b-wave, a measure of On bipolar cell function, as well as the transduction current and the response to TRPV1 agonists were normal, arguing against a role for TRPV1. However, ERG measurements from mice lacking TRPM1 receptors, another TRP channel implicated in retinal function, revealed the absence of a b-wave. Our results suggest that a TRP-like channel, possibly TRPM1, is essential for synaptic function in On bipolar cells.


Vision Research | 1996

Horizontal Cells Feed Back to Cones by Shifting the Cone Calcium-Current Activation Range

J. Verweij; Maarten Kamermans; Henk Spekreijse

We studied feedback from horizontal cells to cones in isolated goldfish retinae and found that surround stimuli evoke an inward current and a slowly developing outward current. The surround-evoked currents are blocked by the glutamate antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) and are, like horizontal cell responses, most effectively evoked by large stimuli. This indicates that the currents are caused by feedback from horizontal cells. The surround-evoked inward current is neither blocked by picrotoxin nor carried by chloride. Instead, it is carried by calcium, and it triggers a slowly developing calcium-dependent chloride current. We were unable to mimick the surround-evoked currents by modulating the extracellular GABA concentration. We conclude that when horizontal cells hyperpolarize they feed back to the cones by shifting the cone calcium-current activation range to more negative potentials. This type of feedback, directly targeted at the calcium current, scarcely influences the membrane potential of the receiving neuron, but effectively modulates its synaptic output.


American Journal of Human Genetics | 2009

Mutations in TRPM1 Are a Common Cause of Complete Congenital Stationary Night Blindness

Maria M. van Genderen; Mieke M. C. Bijveld; Yvonne Claassen; Ralph J. Florijn; Jillian N. Pearring; Françoise Meire; Maureen A. McCall; Frans C. C. Riemslag; Ronald G. Gregg; Arthur A. B. Bergen; Maarten Kamermans

Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous group of retinal disorders characterized by nonprogressive impaired night vision and variable decreased visual acuity. We report here that six out of eight female probands with autosomal-recessive complete CSNB (cCSNB) had mutations in TRPM1, a retinal transient receptor potential (TRP) cation channel gene. These data suggest that TRMP1 mutations are a major cause of autosomal-recessive CSNB in individuals of European ancestry. We localized TRPM1 in human retina to the ON bipolar cell dendrites in the outer plexifom layer. Our results suggest that in humans, TRPM1 is the channel gated by the mGluR6 (GRM6) signaling cascade, which results in the light-evoked response of ON bipolar cells. Finally, we showed that detailed electroretinography is an effective way to discriminate among patients with mutations in either TRPM1 or GRM6, another autosomal-recessive cCSNB disease gene. These results add to the growing importance of the diverse group of TRP channels in human disease and also provide new insights into retinal circuitry.


Current Opinion in Neurobiology | 2004

Ephaptic interactions within a chemical synapse: hemichannel-mediated ephaptic inhibition in the retina.

Maarten Kamermans; Iris Fahrenfort

The two best-known types of cell-cell communication are chemical synapses and electrical synapses, which are formed by gap junctions. A third, less well known, form of communication is ephaptic transmission, in which electric fields generated by a specific neuron alter the excitability of neighboring neurons as a result of their anatomical and electrical proximity. Ephaptic communication can be present in a variety of forms, each with their specific features and functional implications. One of these is ephaptic modulation within a chemical synapse. This type of communication has recently been proposed for the cone-horizontal cell synapse in the vertebrate retina. Evidence indicates that the extracellular potential in the synaptic terminal of photoreceptors is modulated by current flowing through connexin hemichannels at the tips of the horizontal cell dendrites, mediating negative feedback from horizontal cells to cones. This example can be added to the growing list of cases of ephaptic communication in the central nervous system.


Neuron | 2007

Nonapical Symmetric Divisions Underlie Horizontal Cell Layer Formation in the Developing Retina In Vivo

Leanne Godinho; Philip R. Williams; Yvonne Claassen; Elayne Provost; Steven D. Leach; Maarten Kamermans; Rachel Wong

Symmetric cell divisions have been proposed to rapidly increase neuronal number late in neurogenesis, but how critical this mode of division is to establishing a specific neuronal layer is unknown. Using in vivo time-lapse imaging methods, we discovered that in the laminated zebrafish retina, the horizontal cell (HC) layer forms quickly during embryonic development upon division of a precursor cell population. The precursor cells morphologically resemble immature, postmitotic HCs and express HC markers such as ptf1a and Prox1 prior to division. These precursors undergo nonapical symmetric division at the laminar location where mature HCs contact photoreceptors. Strikingly, the precursor cell type we observed generates exclusively HCs. We have thus identified a dedicated HC precursor, and our findings suggest a mechanism of neuronal layer formation whereby the location of mitosis could facilitate rapid contact between synaptic partners.


American Journal of Human Genetics | 2012

GPR179 is required for depolarizing bipolar cell function and is mutated in autosomal-recessive complete congenital stationary night blindness

Neal S. Peachey; Thomas A. Ray; Ralph J. Florijn; Lucy B. Rowe; Trijntje Sjoerdsma; Susana Contreras-Alcantara; Kenkichi Baba; Gianluca Tosini; Nikita Pozdeyev; P. Michael Iuvone; Pasano Bojang; Jillian N. Pearring; Huibert J. Simonsz; Maria M. van Genderen; David G. Birch; Elias I. Traboulsi; Allison Dorfman; Irma Lopez; Huanan Ren; Andrew F. X. Goldberg; Patsy M. Nishina; Pierre Lachapelle; Maureen A. McCall; Robert K. Koenekoop; Arthur A. B. Bergen; Maarten Kamermans; Ronald G. Gregg

Complete congenital stationary night blindness (cCSNB) is a clinically and genetically heterogeneous group of retinal disorders characterized by nonprogressive impairment of night vision, absence of the electroretinogram (ERG) b-wave, and variable degrees of involvement of other visual functions. We report here that mutations in GPR179, encoding an orphan G protein receptor, underlie a form of autosomal-recessive cCSNB. The Gpr179(nob5/nob5) mouse model was initially discovered by the absence of the ERG b-wave, a component that reflects depolarizing bipolar cell (DBC) function. We performed genetic mapping, followed by next-generation sequencing of the critical region and detected a large transposon-like DNA insertion in Gpr179. The involvement of GPR179 in DBC function was confirmed in zebrafish and humans. Functional knockdown of gpr179 in zebrafish led to a marked reduction in the amplitude of the ERG b-wave. Candidate gene analysis of GPR179 in DNA extracted from patients with cCSNB identified GPR179-inactivating mutations in two patients. We developed an antibody against mouse GPR179, which robustly labeled DBC dendritic terminals in wild-type mice. This labeling colocalized with the expression of GRM6 and was absent in Gpr179(nob5/nob5) mutant mice. Our results demonstrate that GPR179 plays a critical role in DBC signal transduction and expands our understanding of the mechanisms that mediate normal rod vision.


PLOS Biology | 2011

Synaptic Transmission from Horizontal Cells to Cones Is Impaired by Loss of Connexin Hemichannels

Lauw J. Klaassen; Ziyi Sun; Marvin N. Steijaert; Petra Bolte; Iris Fahrenfort; Trijntje Sjoerdsma; Jan Klooster; Yvonne Claassen; Colleen R. Shields; Huub M. M. ten Eikelder; Ulrike Janssen-Bienhold; Georg Zoidl; Douglas G. McMahon; Maarten Kamermans

In the vertebrate retina, horizontal cells generate the inhibitory surround of bipolar cells, an essential step in contrast enhancement. For the last decades, the mechanism involved in this inhibitory synaptic pathway has been a major controversy in retinal research. One hypothesis suggests that connexin hemichannels mediate this negative feedback signal; another suggests that feedback is mediated by protons. Mutant zebrafish were generated that lack connexin 55.5 hemichannels in horizontal cells. Whole cell voltage clamp recordings were made from isolated horizontal cells and cones in flat mount retinas. Light-induced feedback from horizontal cells to cones was reduced in mutants. A reduction of feedback was also found when horizontal cells were pharmacologically hyperpolarized but was absent when they were pharmacologically depolarized. Hemichannel currents in isolated horizontal cells showed a similar behavior. The hyperpolarization-induced hemichannel current was strongly reduced in the mutants while the depolarization-induced hemichannel current was not. Intracellular recordings were made from horizontal cells. Consistent with impaired feedback in the mutant, spectral opponent responses in horizontal cells were diminished in these animals. A behavioral assay revealed a lower contrast-sensitivity, illustrating the role of the horizontal cell to cone feedback pathway in contrast enhancement. Model simulations showed that the observed modifications of feedback can be accounted for by an ephaptic mechanism. A model for feedback, in which the number of connexin hemichannels is reduced to about 40%, fully predicts the specific asymmetric modification of feedback. To our knowledge, this is the first successful genetic interference in the feedback pathway from horizontal cells to cones. It provides direct evidence for an unconventional role of connexin hemichannels in the inhibitory synapse between horizontal cells and cones. This is an important step in resolving a long-standing debate about the unusual form of (ephaptic) synaptic transmission between horizontal cells and cones in the vertebrate retina.


Lancet Neurology | 2013

Brain white matter oedema due to ClC-2 chloride channel deficiency: an observational analytical study.

Christel Depienne; Marianna Bugiani; Céline Dupuits; Damien Galanaud; Valerie Touitou; Nienke L. Postma; Carola G.M. van Berkel; Emiel Polder; Eléonore Tollard; Frédéric Darios; Alexis Brice; Christine E.M. de Die-Smulders; J.S.H. Vles; Adeline Vanderver; Graziella Uziel; Cengiz Yalcinkaya; Suzanna G M Frints; Vera M. Kalscheuer; Jan Klooster; Maarten Kamermans; Truus E. M. Abbink; Nicole I. Wolf; Frédéric Sedel; Marjo S. van der Knaap

BACKGROUND Mutant mouse models suggest that the chloride channel ClC-2 has functions in ion and water homoeostasis, but this has not been confirmed in human beings. We aimed to define novel disorders characterised by distinct patterns of MRI abnormalities in patients with leukoencephalopathies of unknown origin, and to identify the genes mutated in these disorders. We were specifically interested in leukoencephalopathies characterised by white matter oedema, suggesting a defect in ion and water homoeostasis. METHODS In this observational analytical study, we recruited patients with leukoencephalopathies characterised by MRI signal abnormalities in the posterior limbs of the internal capsules, midbrain cerebral peduncles, and middle cerebellar peduncles from our databases of patients with leukoencephalopathies of unknown origin. We used exome sequencing to identify the gene involved. We screened the candidate gene in additional patients by Sanger sequencing and mRNA analysis, and investigated the functional effects of the mutations. We assessed the localisation of ClC-2 with immunohistochemistry and electron microscopy in post-mortem human brains of individuals without neurological disorders. FINDINGS Seven patients met our inclusion criteria, three with adult-onset disease and four with childhood-onset disease. We identified homozygous or compound-heterozygous mutations in CLCN2 in three adult and three paediatric patients. We found evidence that the CLCN2 mutations result in loss of function of ClC-2. The remaining paediatric patient had an X-linked family history and a mutation in GJB1, encoding connexin 32. Clinical features were variable and included cerebellar ataxia, spasticity, chorioretinopathy with visual field defects, optic neuropathy, cognitive defects, and headaches. MRI showed restricted diffusion suggesting myelin vacuolation that was confined to the specified white matter structures in adult patients, and more diffusely involved the brain white matter in paediatric patients. We detected ClC-2 in all components of the panglial syncytium, enriched in astrocytic endfeet at the perivascular basal lamina, in the glia limitans, and in ependymal cells. INTERPRETATION Our observations substantiate the concept that ClC-2 is involved in brain ion and water homoeostasis. Autosomal-recessive CLCN2 mutations cause a leukoencephalopathy that belongs to an emerging group of disorders affecting brain ion and water homoeostasis and characterised by intramyelinic oedema. FUNDING European Leukodystrophies Association, INSERM and Assistance Publique-Hôpitaux de Paris, Dutch Organisation for Scientific Research (ZonMw), E-Rare, Hersenstichting, Optimix Foundation for Scientific Research, Myelin Disorders Bioregistry Project, National Institute of Neurological Disorders and Stroke, and Genetic and Epigenetic Networks in Cognitive Dysfunction (GENCODYS) Project (funded by the European Union Framework Programme 7).


PLOS ONE | 2009

Hemichannel-Mediated and pH-Based Feedback from Horizontal Cells to Cones in the Vertebrate Retina

Iris Fahrenfort; Marvin N. Steijaert; Trijntje Sjoerdsma; Evan Vickers; Harris Ripps; Jorrit B. van Asselt; Duco Endeman; Jan Klooster; Robert Numan; Huub M. M. ten Eikelder; Henrique von Gersdorff; Maarten Kamermans

Background Recent studies designed to identify the mechanism by which retinal horizontal cells communicate with cones have implicated two processes. According to one account, horizontal cell hyperpolarization induces an increase in pH within the synaptic cleft that activates the calcium current (Ca2+-current) in cones, enhancing transmitter release. An alternative account suggests that horizontal cell hyperpolarization increases the Ca2+-current to promote transmitter release through a hemichannel-mediated ephaptic mechanism. Methodology/Principal Findings To distinguish between these mechanisms, we interfered with the pH regulating systems in the retina and studied the effects on the feedback responses of cones and horizontal cells. We found that the pH buffers HEPES and Tris partially inhibit feedback responses in cones and horizontal cells and lead to intracellular acidification of neurons. Application of 25 mM acetate, which does not change the extracellular pH buffer capacity, does lead to both intracellular acidification and inhibition of feedback. Because intracellular acidification is known to inhibit hemichannels, the key experiment used to test the pH hypothesis, i.e. increasing the extracellular pH buffer capacity, does not discriminate between a pH-based feedback system and a hemichannel-mediated feedback system. To test the pH hypothesis in a manner independent of artificial pH-buffer systems, we studied the effect of interfering with the endogenous pH buffer, the bicarbonate/carbonic anhydrase system. Inhibition of carbonic anhydrase allowed for large changes in pH in the synaptic cleft of bipolar cell terminals and cone terminals, but the predicted enhancement of the cone feedback responses, according to the pH-hypothesis, was not observed. These experiments thus failed to support a proton mediated feedback mechanism. The alternative hypothesis, the hemichannel-mediated ephaptic feedback mechanism, was therefore studied experimentally, and its feasibility was buttressed by means of a quantitative computer model of the cone/horizontal cell synapse. Conclusion We conclude that the data presented in this paper offers further support for physiologically relevant ephaptic interactions in the retina.


Visual Neuroscience | 1998

The cone/horizontal cell network : A possible site for color constancy

Maarten Kamermans; Kraaij Da; Henk Spekreijse

Color vision is spectrally opponent, suggesting that spectrally opponent neurons, such as the horizontal cells in fish and turtle retinae, play a prominent role in color discrimination. In the accompanying paper (Kraaij et al., 1998), it was shown that the output signal of the horizontal cell system to the cones is not at all spectrally opponent. Therefore, a role for the spectrally opponent horizontal cells in color discrimination seems unlikely. In this paper, we propose that the horizontal cells play a prominent role in color constancy and simultaneous color contrast instead of in color discrimination. We have formulated a model of the cone/horizontal cell network based on measurements of the action spectra of the cones and of the feedback signal of the horizontal cell system to the various cone types. The key feature of the model is (1) that feedback is spectrally and spatially very broad and (2) that the gain of the cone synapse strongly depends on the feedback strength. This makes the synaptic gain of the cones strongly dependent on the spectral composition of the surround. Our model, which incorporates many physiological details of the outer retina, displays a behavior that can be interpreted as color constancy and simultaneous color contrast. We propose that the horizontal cell network modulates the cone synaptic gains such that the ratios of the cone outputs become almost invariant with the spectral composition of the global illumination. Therefore, color constancy appears to be coded in the retina.

Collaboration


Dive into the Maarten Kamermans's collaboration.

Top Co-Authors

Avatar

Jan Klooster

Netherlands Institute for Neuroscience

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trijntje Sjoerdsma

Netherlands Institute for Neuroscience

View shared research outputs
Top Co-Authors

Avatar

Iris Fahrenfort

Netherlands Institute for Neuroscience

View shared research outputs
Top Co-Authors

Avatar

Arthur A. B. Bergen

Albanian Mobile Communications

View shared research outputs
Top Co-Authors

Avatar

Ralph J. Florijn

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lauw J. Klaassen

Netherlands Institute for Neuroscience

View shared research outputs
Top Co-Authors

Avatar

Marcus Howlett

Netherlands Institute for Neuroscience

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge