Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maarten Koornneef is active.

Publication


Featured researches published by Maarten Koornneef.


Current Opinion in Plant Biology | 2002

Seed dormancy and germination

Leónie Bentsink; Maarten Koornneef

Seed dormancy and germination are complex adaptive traits of higher plants that are influenced by a large number of genes and environmental factors. Studies of genetics and physiology have shown the important roles of the plant hormones abscisic acid and gibberellin in the regulation of dormancy and germination. More recently, the use of quantitative genetics and mutant approaches has allowed the further genetic dissection of these traits and the identification of previously unknown components. Molecular techniques, and especially expression studies and transcriptome and proteome analyses, are novel tools for the analysis of seed dormancy and germination. These tools preferentially use Arabidopsis thaliana because of the molecular genetic resources available for this species. However, Solanaceae and cereals also provide important models for dormancy research.


Trends in Plant Science | 2000

Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics

Carlos Alonso-Blanco; Maarten Koornneef

The definition of gene functions requires the phenotypic characterization of genetic variants. Currently, such functional analysis of Arabidopsis genes is based largely on laboratory-induced mutants that are selected in forward and reverse genetic studies. An alternative complementary source of genetic variation is available: the naturally occurring variation among accessions. The multigenic nature of most of this variation has limited its application until now. However, the use of genetic methods developed to map quantitative trait loci, in combination with the characteristics and resources available for molecular biology in Arabidopsis, allow this variation to be exploited up to the molecular level. Here, we describe the current tools available for the forward genetic analysis of this variation, and review the recent progress in the detection and mapping of loci and the cloning of large-effect genes.


Nature Genetics | 2006

The genetics of plant metabolism

Joost J. B. Keurentjes; Jingyuan Fu; C. H. R. de Vos; Arjen Lommen; Robert D. Hall; Raoul J. Bino; L.H.W. van der Plas; Ritsert C. Jansen; Dick Vreugdenhil; Maarten Koornneef

Variation for metabolite composition and content is often observed in plants. However, it is poorly understood to what extent this variation has a genetic basis. Here, we describe the genetic analysis of natural variation in the metabolite composition in Arabidopsis thaliana. Instead of focusing on specific metabolites, we have applied empirical untargeted metabolomics using liquid chromatography–time of flight mass spectrometry (LC-QTOF MS). This uncovered many qualitative and quantitative differences in metabolite accumulation between A. thaliana accessions. Only 13.4% of the mass peaks were detected in all 14 accessions analyzed. Quantitative trait locus (QTL) analysis of more than 2,000 mass peaks, detected in a recombinant inbred line (RIL) population derived from the two most divergent accessions, enabled the identification of QTLs for about 75% of the mass signals. More than one-third of the signals were not detected in either parent, indicating the large potential for modification of metabolic composition through classical breeding.


The Plant Cell | 2001

The TRANSPARENT TESTA12 Gene of Arabidopsis Encodes a Multidrug Secondary Transporter-like Protein Required for Flavonoid Sequestration in Vacuoles of the Seed Coat Endothelium

Isabelle Debeaujon; Anton J. M. Peeters; Karen M. Léon-Kloosterziel; Maarten Koornneef

Phenolic compounds that are present in the testa interfere with the physiology of seed dormancy and germination. We isolated a recessive Arabidopsis mutant with pale brown seeds, transparent testa12 (tt12), from a reduced seed dormancy screen. Microscopic analysis of tt12 developing and mature testas revealed a strong reduction of proanthocyanidin deposition in vacuoles of endothelial cells. Double mutants with tt12 and other testa pigmentation mutants were constructed, and their phenotypes confirmed that tt12 was affected at the level of the flavonoid biosynthetic pathway. The TT12 gene was cloned and found to encode a protein with similarity to prokaryotic and eukaryotic secondary transporters with 12 transmembrane segments, belonging to the MATE (multidrug and toxic compound extrusion) family. TT12 is expressed specifically in ovules and developing seeds. In situ hybridization localized its transcript in the endothelium layer, as expected from the effect of the tt12 mutation on testa flavonoid pigmentation. The phenotype of the mutant and the nature of the gene suggest that TT12 may control the vacuolar sequestration of flavonoids in the seed coat endothelium.


Plant Physiology | 2005

Sucrose-Specific Induction of Anthocyanin Biosynthesis in Arabidopsis Requires the MYB75/PAP1 Gene

Sheng Teng; Joost J. B. Keurentjes; Leónie Bentsink; Maarten Koornneef; Sjef Smeekens

Sugar-induced anthocyanin accumulation has been observed in many plant species. We observed that sucrose (Suc) is the most effective inducer of anthocyanin biosynthesis in Arabidopsis (Arabidopsis thaliana) seedlings. Other sugars and osmotic controls are either less effective or ineffective. Analysis of Suc-induced anthocyanin accumulation in 43 Arabidopsis accessions shows that considerable natural variation exists for this trait. The Cape Verde Islands (Cvi) accession essentially does not respond to Suc, whereas Landsberg erecta is an intermediate responder. The existing Landsberg erecta/Cvi recombinant inbred line population was used in a quantitative trait loci analysis for Suc-induced anthocyanin accumulation (SIAA). A total of four quantitative trait loci for SIAA were identified in this way. The locus with the largest contribution to the trait, SIAA1, was fine mapped and using a candidate gene approach, it was shown that the MYB75/PAP1 gene encodes SIAA1. Genetic complementation studies and analysis of a laboratory-generated knockout mutation in this gene confirmed this conclusion. Suc, in a concentration-dependent way, induces MYB75/PAP1 mRNA accumulation. Moreover, MYB75/PAP1 is essential for the Suc-mediated expression of the dihydroflavonol reductase gene. The SIAA1 locus in Cvi probably is a weak or loss-of-function MYB75/PAP1 allele. The C24 accession similarly shows a very weak response to Suc-induced anthocyanin accumulation encoded by the same locus. Sequence analysis showed that the Cvi and C24 accessions harbor mutations both inside and downstream of the DNA-binding domain of the MYB75/PAP1 protein, which most likely result in loss of activity.


Nature Genetics | 2001

A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2

Salah El-Din El-Assal; Carlos Alonso-Blanco; Anton J. M. Peeters; Vered Raz; Maarten Koornneef

Variation of flowering time is found in the natural populations of many plant species. The underlying genetic variation, mostly of a quantitative nature, is presumed to reflect adaptations to different environments contributing to reproductive success. Analysis of natural variation for flowering time in Arabidopsis thaliana has identified several quantitative trait loci (QTL), which have yet to be characterized at the molecular level. A major environmental factor that determines flowering time is photoperiod or day length, the length of the light period, which changes across the year differently with geographical latitude. We identified the EDI locus as a QTL partly accounting for the difference in flowering response to the photoperiod between two Arabidopsis accessions: the laboratory strain Landsberg erecta (Ler), originating in Northern Europe, and Cvi, collected in the tropical Cape Verde Islands. Positional cloning of the EDI QTL showed it to be a novel allele of CRY2, encoding the blue-light photoreceptor cryptochrome-2 that has previously been shown to promote flowering in long-day (LD) photoperiods. We show that the unique EDI flowering phenotype results from a single amino-acid substitution that reduces the light-induced downregulation of CRY2 in plants grown under short photoperiods, leading to early flowering.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis

Leónie Bentsink; Jemma Jowett; Corrie J. Hanhart; Maarten Koornneef

Genetic variation for seed dormancy in nature is a typical quantitative trait controlled by multiple loci on which environmental factors have a strong effect. Finding the genes underlying dormancy quantitative trait loci is a major scientific challenge, which also has relevance for agriculture and ecology. In this study we describe the identification of the DELAY OF GERMINATION 1 (DOG1) gene previously identified as a quantitative trait locus involved in the control of seed dormancy. This gene was isolated by a combination of positional cloning and mutant analysis and is absolutely required for the induction of seed dormancy. DOG1 is a member of a small gene family of unknown molecular function, with five members in Arabidopsis. The functional natural allelic variation present in Arabidopsis is caused by polymorphisms in the cis-regulatory region of the DOG1 gene and results in considerable expression differences between the DOG1 alleles of the accessions analyzed.


Plant Physiology | 2006

Large Expression Differences in Genes for Iron and Zinc Homeostasis, Stress Response, and Lignin Biosynthesis Distinguish Roots of Arabidopsis thaliana and the Related Metal Hyperaccumulator Thlaspi caerulescens

J.E. van de Mortel; L. Almar Villanueva; Henk Schat; J. Kwekkeboom; S. Coughlan; Perry D. Moerland; E. Ver Loren van Themaat; Maarten Koornneef; Mark G. M. Aarts

The micronutrient zinc has an essential role in physiological and metabolic processes in plants as a cofactor or structural element in 300 catalytic and noncatalytic proteins, but it is very toxic when available in elevated amounts. Plants tightly regulate their internal zinc concentrations in a process called zinc homeostasis. The exceptional zinc hyperaccumulator species Thlaspi caerulescens can accumulate up to 3% of zinc, but also high amounts of nickel and cadmium, without any sign of toxicity. This should have drastic effects on the zinc homeostasis mechanism. We examined in detail the transcription profiles of roots of Arabidopsis thaliana and T. caerulescens plants grown under deficient, sufficient, and excess supply of zinc. A total of 608 zinc-responsive genes with at least a 3-fold difference in expression level were detected in A. thaliana and 352 in T. caerulescens in response to changes in zinc supply. Only 14% of these genes were also zinc responsive in A. thaliana. When comparing A. thaliana with T. caerulescens at each zinc exposure, more than 2,200 genes were significantly differentially expressed (≥5-fold and false discovery rate < 0.05). While a large fraction of these genes are of yet unknown function, many genes with a different expression between A. thaliana and T. caerulescens appear to function in metal homeostasis, in abiotic stress response, and in lignin biosynthesis. The high expression of lignin biosynthesis genes corresponds to the deposition of lignin in the endodermis, of which there are two layers in T. caerulescens roots and only one in A. thaliana.


The Plant Cell | 2009

What Has Natural Variation Taught Us about Plant Development, Physiology, and Adaptation?

Carlos Alonso-Blanco; Mark G. M. Aarts; Leónie Bentsink; Joost J. B. Keurentjes; Matthieu Reymond; Dick Vreugdenhil; Maarten Koornneef

Nearly 100 genes and functional polymorphisms underlying natural variation in plant development and physiology have been identified. In crop plants, these include genes involved in domestication traits, such as those related to plant architecture, fruit and seed structure and morphology, as well as yield and quality traits improved by subsequent crop breeding. In wild plants, comparable traits have been dissected mainly in Arabidopsis thaliana. In this review, we discuss the major contributions of the analysis of natural variation to our understanding of plant development and physiology, focusing in particular on the timing of germination and flowering, plant growth and morphology, primary metabolism, and mineral accumulation. Overall, functional polymorphisms appear in all types of genes and gene regions, and they may have multiple mutational causes. However, understanding this diversity in relation to adaptation and environmental variation is a challenge for which tools are now available.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci

Joost J. B. Keurentjes; Jingyuan Fu; Inez Terpstra; Juan M. Garcia; Guido Van den Ackerveken; L. Basten Snoek; Anton J. M. Peeters; Dick Vreugdenhil; Maarten Koornneef; Ritsert C. Jansen

Accessions of a plant species can show considerable genetic differences that are analyzed effectively by using recombinant inbred line (RIL) populations. Here we describe the results of genome-wide expression variation analysis in an RIL population of Arabidopsis thaliana. For many genes, variation in expression could be explained by expression quantitative trait loci (eQTLs). The nature and consequences of this variation are discussed based on additional genetic parameters, such as heritability and transgression and by examining the genomic position of eQTLs versus gene position, polymorphism frequency, and gene ontology. Furthermore, we developed an approach for genetic regulatory network construction by combining eQTL mapping and regulator candidate gene selection. The power of our method was shown in a case study of genes associated with flowering time, a well studied regulatory network in Arabidopsis. Results that revealed clusters of coregulated genes and their most likely regulators were in agreement with published data, and unknown relationships could be predicted.

Collaboration


Dive into the Maarten Koornneef's collaboration.

Top Co-Authors

Avatar

Dick Vreugdenhil

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Carlos Alonso-Blanco

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leónie Bentsink

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Joost J. B. Keurentjes

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Mark G. M. Aarts

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen M. Léon-Kloosterziel

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge