Maarten T. Huisman
Johnson & Johnson
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maarten T. Huisman.
Drug Metabolism and Disposition | 2013
E. van de Steeg; Rick Greupink; M. Schreurs; Irene H.G. Nooijen; Kitty C.M. Verhoeckx; R. Hanemaaijer; D. Ripken; M. Monshouwer; M.L.H. Vlaming; Jeroen DeGroot; Miriam Verwei; Frans G. M. Russel; Maarten T. Huisman; Heleen M. Wortelboer
Organic anion–transporting polypeptide 1B1 (OATP1B1) is an important hepatic uptake transporter, of which the polymorphic variant OATP1B1*15 (Asn130Asp and Val174Ala) has been associated with decreased transport activity. Rosuvastatin is an OATP1B1 substrate and often concomitantly prescribed with oral antidiabetics in the clinic. The aim of this study was to investigate possible drug-drug interactions between these drugs at the level of OATP1B1 and OATP1B1*15. We generated human embryonic kidney (HEK)293 cells stably overexpressing OATP1B1 or OATP1B1*15 that showed similar protein expression levels of OATP1B1 and OATP1B1*15 at the cell membrane as measured by liquid chromatography-tandem mass spectrometry. In HEK-OATP1B1*15 cells, the Vmax for OATP1B1-mediated transport of E217β-G (estradiol 17β-d-glucuronide) was decreased >60%, whereas Km values (Michaelis constant) were comparable. Uptake of rosuvastatin in HEK-OATP1B1 cells (Km 13.1 ± 0.43 μM) was nearly absent in HEK-OATP1B1*15 cells. Interestingly, several oral antidiabetics (glyburide, glimepiride, troglitazone, pioglitazone, glipizide, gliclazide, and tolbutamide), but not metformin, were identified as significant inhibitors of the OATP1B1-mediated transport of rosuvastatin. The IC50 values for inhibition of E217β-G uptake were similar between OATP1B1 and OATP1B1*15. In conclusion, these studies indicate that several oral antidiabetic drugs affect the OATP1B1-mediated uptake of rosuvastatin in vitro. The next step will be to translate these data to the clinical situation, as it remains to be established whether the studied oral antidiabetics indeed affect the clinical pharmacokinetic profile of rosuvastatin in patients.
European Journal of Pharmaceutical Sciences | 2014
Sieto Bosgra; Evita van de Steeg; M.L.H. Vlaming; Kitty C.M. Verhoeckx; Maarten T. Huisman; Miriam Verwei; Heleen M. Wortelboer
In contrast to primary hepatocytes, estimating carrier-mediated hepatic disposition by using a panel of single transfected cell-lines provides direct information on the contribution of the individual transporters to the net disposition. The most direct way to correct for differences in transporter abundance between cell-lines and tissue is by using absolute protein quantification. In the present study, the performance of this strategy to predict human hepatic uptake transport was investigated and compared with traditional scaling from primary human hepatocytes. Rosuvastatin was used as a model compound. The uptake activity was measured in HEK293 cell-lines stably overexpressing OATP1B1(∗)1a, OATP1B3 or OATP2B1, the major transporters involved in human hepatic uptake of rosuvastatin, or expressing OATP1B1(∗)15, associated with reduced hepatic uptake of rosuvastatin. The abundance of these transporter proteins in the outer membranes of HEK293-cells, in human primary hepatocytes and in human liver tissue was determined by LC-MS/MS. The measured activity, corrected for protein abundance and scaled to the whole liver, gave a very accurate prediction of the hepatic intrinsic clearance observed in vivo. Embedded in a PBPK model describing the hepatic disposition and enterohepatic circulation, the collective in vitro data resulted in a good explanation of the observed oral and intravenous pharmacokinetic profiles of rosuvastatin. The model allowed simulation of the effect of polymorphic variants of OATP1B1 on rosuvastatin pharmacokinetics. These results encourage a larger scale validation. This approach may facilitate prediction of drug-drug interactions, scaling of transporter processes across subpopulations (children, diseased patients), and may be extended to tissues for which primary cells may be more difficult to obtain.
European Journal of Pharmaceutical Sciences | 2011
Rick Greupink; Lieve Dillen; Mario Monshouwer; Maarten T. Huisman; Frans G. M. Russel
It has been reported that polymorphisms in the organic anion transporting polypeptide 1B1 (OATP1B1, SLCO1B1) result in decreased hepatic uptake of simvastatin carboxy acid, the active metabolite of simvastatin. This is not the case for fluvastatin and it has been hypothesized that for this drug other hepatic uptake pathways exist. Here, we studied whether Na(+)-dependent taurocholate co-transporting polypeptide (NTCP, SLC10A1) can be an alternative hepatic uptake route for fluvastatin. Chinese Hamster Ovary cells transfected with human NTCP (CHO-NTCP) were used to investigate the inhibitory effect of fluvastatin and other statins on [(3)H]-taurocholic acid uptake ([(3)H]-TCA). Statin uptake by CHO-NTCP and cryopreserved human hepatocytes was assessed via LC-MS/MS. Fluvastatin appeared to be a potent and competitive inhibitor of [(3)H]-TCA uptake (IC(50) of 40μM), pointing to an interaction at the level of the bile acid binding pocket of NTCP. The inhibitory action of other statins was also studied, which revealed that statin inhibitory potency increased with molecular descriptors of lipophilicity: calculated logP (r(2)=0.82, p=0.034), logD(7.4) (r(2)=0.77, p=0.0001). Studies in CHO-NTCP cells showed that fluvastatin was indeed an NTCP substrate (K(m) 250±30μM, V(max) 1340±50ng/mg total cell protein/min). However, subsequent studies revealed that at clinically relevant plasma concentrations, NTCP contributed minimally to overall accumulation in human hepatocytes. In conclusion, fluvastatin interacts with NTCP at the level of the bile acid binding pocket and is an NTCP substrate. However, under normal conditions, NTCP-mediated uptake of this drug seems not to be a significant hepatocellular uptake pathway.
Rapid Communications in Mass Spectrometry | 2009
Laurent Leclercq; Russell J. Mortishire-Smith; Maarten T. Huisman; Filip Cuyckens; Michael J. Hartshorn; Alastair W. Hill
We describe a novel approach for the automated localization of biotransformations, which we term IsoScore. Accurate mass measurement spectra of a parent drug and its metabolites are acquired. All virtual regioisomers of a given biotransformation are generated in silico by iterating over all plausible sites of oxidation around the parent drug. Each is then fragmented virtually using an exhaustive approach supplemented with chemical intelligence. Each fragment is scored based on the likelihood that it can be formed from the precursor structure. The fragment library of each virtual isomer is then compared with the experimentally observed ions. The likelihood that a regioisomer explains the observed fragmentation data is contained in its cumulated score. We include additional weightings, which take into account the level of similarity between the mass spectra of the metabolite and the parent compound.This concept was tested on a variety of metabolites from different chemical platforms formed via single biotransformations. For a very large proportion of the metabolites, IsoScore correctly located the biotransformation to the expected position. All ions above a defined threshold in the spectrum are used to contribute to the score with no predisposition to ignore minor ions or to weight conclusions based on readily interpretable fragments. The approach is found to be most successful when differential scoring is observed between related ions in the parent and the metabolite. Further improvements in the scoring function will result in increased differentiation between likely and unlikely structures, even when the parent and the metabolite spectra show little similarity.
Toxicological Sciences | 2012
Rick Greupink; Sander B. Nabuurs; Barbara Zarzycka; Vivienne Verweij; Mario Monshouwer; Maarten T. Huisman; Frans G. M. Russel
Na(+)-dependent taurocholate cotransporting polypeptide (NTCP, SLC10A1) is the main transporter facilitating the hepatic uptake of bile acids from the circulation. Consequently, the interaction of xenobiotics, including therapeutic drugs, with the bile acid binding pocket of NTCP could lead to impairment of hepatic bile acid uptake. We pursued a 3D-pharmacophore approach to model the NTCP substrate and inhibitor specificity and investigated whether it is possible to identify compounds with intrinsic NTCP inhibitory properties. Based on known endogenous NTCP substrates, a 3D-pharmacophore model was built, which was subsequently used to screen two virtual libraries together containing the structures of 10 million compounds. Studies with Chinese hamster ovary cells overexpressing human NTCP, human hepatocytes, ex vivo perfused rat livers, and bile duct-cannulated rats were conducted to validate the activity of the virtual screening hits. Modeling yielded a 3D-pharmacophore, consisting of two hydrogen bond acceptors and three hydrophobic features. Six out of 10 structurally diverse compounds selected in the first virtual screening procedure significantly inhibited taurocholate uptake in the NTCP overexpressing cells. For the most potent inhibitor identified, an anthraquinone derivative, this finding was confirmed in human hepatocytes and perfused rat livers. Subsequent structure and activity relationship studies with analogs of this derivative indicated that an appropriate distance between hydrogen bond acceptor features and presence of one or two negative charges appear critical for a successful NTCP interaction. In conclusion, pharmacophore modeling was successfully used to identify compounds that inhibit NTCP. Our approach represents an important first step toward the in silico flagging of potential cholestasis-inducing molecules.
The Journal of Nuclear Medicine | 2013
Sara Neyt; Maarten T. Huisman; Christian Vanhove; Hilde De Man; Maarten Vliegen; Lieselotte Moerman; Caroline Dumolyn; Geert Mannens; Filip De Vos
Hepatic transport of 99mTc-mebrofenin through organic anion transport protein 1a and 1b (Oatp1a/1b) and multidrug resistance protein 2 (Mrp2) was investigated by small-animal SPECT. On the basis of the results, a noninvasive method to visualize and quantify disturbances in hepatic transport is proposed. Methods: Friend virus B wild-type mice (untreated, bile duct–ligated, vehicle- or rifampicin-treated) and strain-matched knockout mice unable to express the uptake transporters Oatp1a/1b (Slco1a/1b−/−/−/−) or the efflux transporter Mrp2 (Abcc2−/−) were intravenously injected with 99mTc-mebrofenin (n = 3 per group). After dynamic small-animal SPECT and short CT acquisitions, time–activity curves of the liver and of the gallbladder and intestines were obtained and correlated with direct blood samples. Results: Normal hepatobiliary clearance of 99mTc-mebrofenin was severely impaired in the bile duct–ligated animal, as evidenced by elevated hepatic tracer levels. In Slco1a/1b−/−/−/− mice, a lower area under the curve (AUC) for the liver (P = 0.014) was obtained and no activity was detected in the gallbladder and intestines. Renal rerouting was observed, along with an increase in the blood AUC (P = 0.01). Abcc2−/− mice had a higher liver AUC (P = 0.009), a delayed emergence time of 99mTc-mebrofenin in the gallbladder (P = 0.009), and a lower AUC for the gallbladder and intestines (P = 0.001). The blood curve was similar to that of wild-type mice. 99mTc-mebrofenin disposition was altered after rifampicin treatments. We observed a dose-dependent delayed time point at which tracer maximized in liver, an increased AUC for liver, and a lower AUC for gallbladder and intestines (P = 0.042, 0.034, and 0.001, respectively, highest dose). Emergence in the gallbladder occurred later (P = 0.009, highest dose), and blood AUC was higher (P = 0.006). Conclusion: The current study visualized and quantified hepatic uptake and biliary efflux of 99mTc-mebrofenin. Our results demonstrated the possibility of discriminating, on a quantitative level, between lack of functional activity of sinusoidal uptake versus that of biliary efflux transporters.
European Journal of Pharmaceutical Sciences | 2013
Rick Greupink; Marieke Schreurs; Marina S. Benne; Maarten T. Huisman; Frans G. M. Russel
We studied if the clinical pharmacokinetics and drug-drug interactions (DDIs) of the sulfonylurea-derivative glibenclamide can be simulated via a physiologically-based pharmacokinetic modeling approach. To this end, a glibenclamide PBPK-model was build in Simcyp using in vitro physicochemical and biotransformation data of the drug, and was subsequently optimized using plasma disappearance data observed after i.v. administration. The model was validated against data observed after glibenclamide oral dosing, including DDIs. We found that glibenclamide pharmacokinetics could be adequately modeled if next to CYP metabolism an active hepatic uptake process was assumed. This hepatic uptake process was subsequently included in the model in a non-mechanistic manner. After an oral dose of 0.875 mg predicted Cmax and AUC were 39.7 (95% CI:37.0-42.7)ng/mL and 108 (95% CI: 96.9-120)ng/mLh, respectively, which is in line with observed values of 43.6 (95% CI: 37.7-49.5)ng/mL and 133 (95% CI: 107-159)ng/mLh. For a 1.75 mg oral dose, the predicted and observed values were 82.5 (95% CI:76.6-88.9)ng/mL vs 91.1 (95% CI: 67.9-115.9) for Cmax and 224 (95% CI: 202-248) vs 324 (95% CI: 197-451)ng/mLh for AUC, respectively. The model correctly predicted a decrease in exposure after rifampicin pre-treatment. An increase in glibenclamide exposure after clarithromycin co-treatment was predicted, but the magnitude of the effect was underestimated because part of this DDI is the result of an interaction at the transporter level. Finally, the effects of glibenclamide and fluconazol co-administration were simulated. Our simulations indicated that co-administration of this potent CYP450 inhibitor will profoundly increase glibenclamide exposure, which is in line with clinical observations linking the glibenclamide-fluconazol combination to an increased risk of hypoglycemia. In conclusion, glibenclamide pharmacokinetics and its CYP-mediated DDIs can be simulated via PBPK-modeling. In addition, our data underline the relevance of modeling transporters on a full mechanistic level to further improve pharmacokinetic and DDI predictions of this sulfonylurea-derivative.
Nuclear Medicine and Biology | 2016
Sara Neyt; Maarten Vliegen; Bjorn Verreet; Stef De Lombaerde; Kim Braeckman; Christian Vanhove; Maarten T. Huisman; Caroline Dumolyn; Ken Kersemans; Fabian Hulpia; Serge Van Calenbergh; Geert Mannens; Filip De Vos
INTRODUCTION Hepatobiliary transport mechanisms are crucial for the excretion of substrate toxic compounds. Drugs can inhibit these transporters, which can lead to drug-drug interactions causing toxicity. Therefore, it is important to assess this early during the development of new drug candidates. The aim of the current study is the (radio)synthesis, in vitro and in vivo evaluation of a technetium labeled chenodeoxycholic and cholic acid analogue: [(99m)Tc]-DTPA-CDCA and [(99m)]Tc-DTPA-CA, respectively, as biomarker for disturbed transporter functionality. METHODS [99mTc]-DTPA-CDCA([(99m)Tc]-3a) and [99mTc]-DTPA-CA ([(99m)Tc]-3b) were synthesized and evaluated in vitro and in vivo. Uptake of both tracers was investigated in NTCP, OCT1, OATP1B1, OATP1B3 transfected cell lines. Km and Vmax values were determined and compared to [(99m)Tc]-mebrofenin ([(99m)Tc]-MEB). Efflux was investigated by means of CTRL, MRP2 and BSEP transfected inside-out vesicles. Metabolite analysis was performed using pooled human liver S9. Wild type (n=3) and rifampicin treated (n=3) mice were intravenously injected with 37MBq of tracer. After dynamic small-animal SPECT and short CT acquisitions, time-activity curves of heart, liver, gallbladder and intestines were obtained. RESULTS We demonstrated that OATP1B1 and OATP1B3 are the involved uptake transporters of both compounds. Both tracers show a higher affinity compared to [(99m)Tc]-MEB, but are in a similar range as endogenous bile acids for OATP1B1 and OATP1B3. [(99m)Tc]-3a shows higher affinities compared to [(99m)Tc]-3b. Vmax values were lower compared to [(99m)Tc]-MEB, but in the same range as endogenous bile acids. MRP2 was identified as efflux transporter. Less than 7% of both radiotracers was metabolized in the liver. In vitro results were confirmed by in vivo results. Uptake in the liver and efflux to gallbladder + intestines and urinary bladder of both tracers was observed. Transport was inhibited by rifampicin. CONCLUSION The involved transporters were identified; both tracers are taken up in the hepatocytes by OATP1B1 andOATP1B3 with Km and Vmax values in the same range as endogenous bile acids and are secreted into bile canaliculi via MRP2. Dynamic small-animal SPECT imaging can be a useful noninvasive method of visualizing and quantifying hepatobiliary transporter functionality and disturbances thereof in vivo, which could predict drug pharmacokinetics.
2013 World Molecular Imaging Congress (WMIC 2013) | 2013
Sara Neyt; Maarten T. Huisman; Caroline Dumolyn; Maarten Vliegen; Christian Vanhove; Geert Mannens; Filip De Vos
The Journal of Nuclear Medicine | 2012
Sara Neyt; Maarten T. Huisman; Geert Mannens; Hilde De Man; Maarten Vliegen; Caroline Dumolyn; Christian Vanhove; Filip De Vos