Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maarten van den Berge is active.

Publication


Featured researches published by Maarten van den Berge.


PLOS Genetics | 2012

Lung eQTLs to Help Reveal the Molecular Underpinnings of Asthma

Ke Hao; Yohan Bossé; David C. Nickle; Peter D. Paré; Dirkje S. Postma; Michel Laviolette; Andrew J. Sandford; Tillie L. Hackett; Denise Daley; James C. Hogg; W. Mark Elliott; Christian Couture; Maxime Lamontagne; Corry-Anke Brandsma; Maarten van den Berge; Gerard H. Koppelman; Alise Reicin; Donald W. Nicholson; Vladislav Malkov; Jonathan Derry; Christine Suver; Jeffrey A. Tsou; Amit Kulkarni; Chunsheng Zhang; Rupert Vessey; Greg J. Opiteck; Sean P. Curtis; Wim Timens; Don D. Sin

Genome-wide association studies (GWAS) have identified loci reproducibly associated with pulmonary diseases; however, the molecular mechanism underlying these associations are largely unknown. The objectives of this study were to discover genetic variants affecting gene expression in human lung tissue, to refine susceptibility loci for asthma identified in GWAS studies, and to use the genetics of gene expression and network analyses to find key molecular drivers of asthma. We performed a genome-wide search for expression quantitative trait loci (eQTL) in 1,111 human lung samples. The lung eQTL dataset was then used to inform asthma genetic studies reported in the literature. The top ranked lung eQTLs were integrated with the GWAS on asthma reported by the GABRIEL consortium to generate a Bayesian gene expression network for discovery of novel molecular pathways underpinning asthma. We detected 17,178 cis- and 593 trans- lung eQTLs, which can be used to explore the functional consequences of loci associated with lung diseases and traits. Some strong eQTLs are also asthma susceptibility loci. For example, rs3859192 on chr17q21 is robustly associated with the mRNA levels of GSDMA (P = 3.55×10−151). The genetic-gene expression network identified the SOCS3 pathway as one of the key drivers of asthma. The eQTLs and gene networks identified in this study are powerful tools for elucidating the causal mechanisms underlying pulmonary disease. This data resource offers much-needed support to pinpoint the causal genes and characterize the molecular function of gene variants associated with lung diseases.


Chest | 2011

Small Airway Disease in Asthma and COPD: Clinical Implications

Maarten van den Berge; Nick H. T. ten Hacken; Judith Cohen; W. Rob Douma; Dirkje S. Postma

Asthma and COPD have a high personal, societal, and economic impact. Both diseases are characterized by airway obstruction and an inflammatory process. The inflammatory process affects the whole respiratory tract, from central to peripheral airways that are <2 mm in internal diameter, the so-called small airways. There is an increased interest in small airway disease, and some new insights have been gained about the contribution of these small airways to the clinical expression of asthma and COPD, as reviewed in this article. Newly developed devices enable drugs to target the small airways, and this may have implications for treatment of patients with asthma, particularly those not responding to large-particle inhaled corticosteroids or those with uncontrollable asthma. The first studies in COPD are promising, and results from new studies are eagerly awaited.


The Lancet | 2015

Risk factors and early origins of chronic obstructive pulmonary disease

Dirkje S. Postma; Andrew Bush; Maarten van den Berge

Chronic obstructive pulmonary disease is mainly a smoking-related disorder and affects millions of people worldwide, with a large effect on individual patients and society as a whole. Although the disease becomes clinically apparent around the age of 40-50 years, its origins can begin very early in life. Different risk factors in very early life--ie, in utero and during early childhood--drive the development of clinically apparent chronic obstructive pulmonary disease in later life. In discussions of which risk factors drive chronic obstructive pulmonary disease, it is important to realise that the disease is very heterogeneous and at present is largely diagnosed by lung function only. In this Review, we will discuss the evidence for risk factors for the various phenotypes of chronic obstructive pulmonary disease during different stages of life.


Cancer Research | 2012

Molecular Signature of Smoking in Human Lung Tissues

Yohan Bossé; Dirkje S. Postma; Don D. Sin; Maxime Lamontagne; Christian Couture; Nathalie Gaudreault; Philippe Joubert; Vivien Wong; Mark Elliott; Maarten van den Berge; Corry A. Brandsma; Catherine Tribouley; Vladislav Malkov; Jeffrey A. Tsou; Gregory J. Opiteck; James C. Hogg; Andrew J. Sandford; Wim Timens; Peter D. Paré; Michel Laviolette

Cigarette smoking is the leading risk factor for lung cancer. To identify genes deregulated by smoking and to distinguish gene expression changes that are reversible and persistent following smoking cessation, we carried out genome-wide gene expression profiling on nontumor lung tissue from 853 patients with lung cancer. Gene expression levels were compared between never and current smokers, and time-dependent changes in gene expression were studied in former smokers. A total of 3,223 transcripts were differentially expressed between smoking groups in the discovery set (n = 344, P < 1.29 × 10(-6)). A substantial number of smoking-induced genes also were validated in two replication sets (n = 285 and 224), and a gene expression signature of 599 transcripts consistently segregated never from current smokers across all three sets. The expression of the majority of these genes reverted to never-smoker levels following smoking cessation, although the time course of normalization differed widely among transcripts. Moreover, some genes showed very slow or no reversibility in expression, including SERPIND1, which was found to be the most consistent gene permanently altered by smoking in the three sets. Our findings therefore indicate that smoking deregulates many genes, many of which reverse to normal following smoking cessation. However, a subset of genes remains altered even decades following smoking cessation and may account, at least in part, for the residual risk of lung cancer among former smokers. Cancer Res; 72(15); 3753-63. ©2012 AACR.


American Journal of Respiratory and Critical Care Medicine | 2013

A Dynamic Bronchial Airway Gene Expression Signature of Chronic Obstructive Pulmonary Disease and Lung Function Impairment

Katrina Steiling; Maarten van den Berge; Kahkeshan Hijazi; Roberta Florido; Joshua D. Campbell; Gang Liu; Ji Xiao; Xiaohui Zhang; Grant Duclos; Eduard Drizik; Huiqing Si; Catalina Perdomo; Charles Dumont; Harvey O. Coxson; Yuriy O. Alekseyev; Don D. Sin; Peter D. Paré; James C. Hogg; Annette McWilliams; Pieter S. Hiemstra; Peter J. Sterk; Wim Timens; Jeffrey T. Chang; Paola Sebastiani; George T. O'Connor; Andrea Bild; Dirkje S. Postma; Stephen Lam; Avrum Spira; Marc E. Lenburg

RATIONALE Molecular phenotyping of chronic obstructive pulmonary disease (COPD) has been impeded in part by the difficulty in obtaining lung tissue samples from individuals with impaired lung function. OBJECTIVES We sought to determine whether COPD-associated processes are reflected in gene expression profiles of bronchial airway epithelial cells obtained by bronchoscopy. METHODS Gene expression profiling of bronchial brushings obtained from 238 current and former smokers with and without COPD was performed using Affymetrix Human Gene 1.0 ST Arrays. MEASUREMENTS AND MAIN RESULTS We identified 98 genes whose expression levels were associated with COPD status, FEV1% predicted, and FEV1/FVC. In silico analysis identified activating transcription factor 4 (ATF4) as a potential transcriptional regulator of genes with COPD-associated airway expression, and ATF4 overexpression in airway epithelial cells in vitro recapitulates COPD-associated gene expression changes. Genes with COPD-associated expression in the bronchial airway epithelium had similarly altered expression profiles in prior studies performed on small-airway epithelium and lung parenchyma, suggesting that transcriptomic alterations in the bronchial airway epithelium reflect molecular events found at more distal sites of disease activity. Many of the airway COPD-associated gene expression changes revert toward baseline after therapy with the inhaled corticosteroid fluticasone in independent cohorts. CONCLUSIONS Our findings demonstrate a molecular field of injury throughout the bronchial airway of active and former smokers with COPD that may be driven in part by ATF4 and is modifiable with therapy. Bronchial airway epithelium may ultimately serve as a relatively accessible tissue in which to measure biomarkers of disease activity for guiding clinical management of COPD.


Thorax | 2013

Role of aberrant WNT signalling in the airway epithelial response to cigarette smoke in chronic obstructive pulmonary disease

Hilde Heijink; Harold G. de Bruin; Maarten van den Berge; Lisa J. C. Bennink; Simone M. Brandenburg; Reinoud Gosens; Antoon J. M. van Oosterhout; Dirkje S. Postma

Background WNT signalling is activated during lung tissue damage and inflammation. We investigated whether lung epithelial expression of WNT ligands, receptors (frizzled; FZD) or target genes is dysregulated on cigarette smoking and/or in chronic obstructive pulmonary disease (COPD). Methods We studied this in human lung epithelial cell lines and primary bronchial epithelial cells (PBEC) from COPD patients and control (non-)smokers, at baseline and on cigarette smoke extract (CSE) exposure. Results CSE significantly decreased WNT-4, WNT-10B and FZD2 and increased WNT-5B mRNA expression in 16HBE, but did not affect WNT-4 protein. The mRNA expression of WNT-4, but not other WNT ligands, was lower in PBEC from smokers than non-smokers and downregulated by CSE in PBEC from all groups, yet higher in PBEC from COPD patients than control smokers. Moreover, PBEC from COPD patients displayed higher WNT-4 protein expression than both smokers and non-smokers. Exogenously added WNT-4 significantly increased CXCL8/IL-8, IL-6, CCL5/RANTES, CCL2/MCP-1 and vascular endothelial growth factor (VEGF) secretion in 16HBE, but did not affect the canonical WNT target genes MMP-2, MMP-9, fibronectin, β-catenin, Dickkopf and axin-2, and induced activation of the non-canonical signalling molecule p38. Moreover, WNT-4 potentiated the CSE-induced upregulation of IL-8 and VEGF. Conclusions WNT-4 mRNA and protein levels are higher in PBEC from COPD patients than control (non-)smokers, while cigarette smoke downregulates airway epithelial WNT-4 mRNA, but not protein expression. As WNT-4 further increases CSE-induced pro-inflammatory cytokine release in bronchial epithelium, we propose that higher epithelial WNT-4 levels in combination with cigarette smoking may have important implications for the development of airway inflammation in COPD.


Clinics in Chest Medicine | 2014

Asthma and Chronic Obstructive Pulmonary Disease: Similarities and Differences

Dirkje S. Postma; Helen K. Reddel; Nick H. T. ten Hacken; Maarten van den Berge

Asthma and COPD are both heterogeneous lung diseases including many different phenotypes. The classical asthma and COPD phenotypes are easy to discern because they reflect extremes of a phenotypical spectrum. Thus asthma in childhood and COPD in smokers have their own phenotypic expression with underlying pathophysiological mechanisms that differ importantly. In older adults, asthma and COPD are more difficult to differentiate and there exists a bronchodilator response in most but not all patients with asthma and persistent airway obstruction in most but not all patients with COPD where even up to 50% have been reported to have some bronchodilator response as assessed with FEV1. Airway obstruction is generated in the large and small airways both in asthma and COPD, and this small airway obstruction is located more proximally in asthma, yet is found more distally in severe and older individuals with asthma, comparable to COPD. Though the underlying inflammation and remodelling processes in asthma and COPD are different in their extreme phenotypes, there are overlap phenotypes with eosinophilic inflammation even in stable COPD and neutrophilic inflammation in longstanding and severe asthma.


American Journal of Respiratory Cell and Molecular Biology | 2013

Caveolin-1 Controls Airway Epithelial Barrier Function Implications for Asthma

Tillie-Louise Hackett; Harold G. de Bruin; Furquan Shaheen; Maarten van den Berge; Antoon J. M. van Oosterhout; Dirkje S. Postma; Irene H. Heijink

The molecular basis for airway epithelial fragility in asthma has remained unclear. We investigated whether the loss of caveolin-1, the major component of caveolae and a known stabilizer of adherens junctions, contributes to epithelial barrier dysfunction in asthma. We studied the expression of caveolin-1 and adhesion molecules E-cadherin and β-catenin in airway sections, and we cultured bronchial epithelial cells from patients with asthma and from healthy control subjects. To determine the functional role of caveolin-1, we investigated the effects of caveolin-1 up-regulation and down-regulation on E-cadherin expression, barrier function, and proallergic activity in the human bronchial epithelial cell lines 16HBE and BEAS-2B. The membrane expression of caveolin-1 was significantly lower in airway epithelia from patients with asthma than from subjects without asthma, and this lower expression was maintained in vitro upon air-liquid interface and submerged culturing. Importantly, reduced caveolin-1 expression was accompanied by a loss of junctional E-cadherin and β-catenin expression, disrupted epithelial barrier function, and increased levels of the proallergic cytokine thymic stromal lymphopoietin (TSLP). Furthermore, E-cadherin redistribution upon exposure to epidermal growth factor or house dust mite was paralleled by the internalization of caveolin-1 in 16HBE cells. These effects appear to be causally related, because the short, interfering RNA down-regulation of caveolin-1 resulted in the delocalization of E-cadherin and barrier dysfunction in 16HBE cells. Moreover, caveolin-1 overexpression improved barrier function and reduced TSLP expression in BEAS-2B cells. Together, our data demonstrate a crucial role for caveolin-1 in epithelial cell-cell adhesion, with important consequences for epithelial barrier function and the promotion of Th2 responses in asthma.


Thorax | 2015

A large lung gene expression study identifying fibulin-5 as a novel player in tissue repair in COPD

Corry-Anke Brandsma; Maarten van den Berge; Dirkje S. Postma; Marnix Jonker; Sharon Brouwer; Peter D. Paré; Don D. Sin; Yohan Bossé; Michel Laviolette; Juha Karjalainen; Rudolf S. N. Fehrmann; David C. Nickle; Ke Hao; Anita I.R. Spanjer; Wim Timens; Lude Franke

Background Chronic obstructive pulmonary disease (COPD) is a progressive, incurable lung disease characterised by abnormal tissue repair causing emphysema and small airways fibrosis. Since current therapy cannot modify this abnormal repair, it is crucial to unravel its underlying molecular mechanisms. Unbiased analysis of genome-wide gene expression profiles in lung tissue provides a powerful tool to investigate this. Methods We performed genome-wide gene expression profiling in 581 lung tissue samples from current and ex-smokers with (n=311) and without COPD (n=270). Subsequently, quantitative PCR, western blot and immunohistochemical analyses were performed to validate our main findings. Results 112 genes were found to be upregulated in patients with COPD compared with controls, whereas 61 genes were downregulated. Among the most upregulated genes were fibulin-5 (FBLN5), elastin (ELN), latent transforming growth factor β binding protein 2 (LTBP2) and microfibrillar associated protein 4 (MFAP4), all implicated in elastogenesis. Our gene expression findings were validated at mRNA and protein level. We demonstrated higher ELN gene expression in COPD lung tissue and similar trends for FBLN5 and MFAP4, and negative correlations with lung function. FBLN5 protein levels were increased in COPD lung tissue and cleaved, possibly non-functional FBLN5 protein was present. Strong coexpression of FBLN5, ELN, LTBP2 and MFAP4 in lung tissue and in silico analysis indicated cofunctionality of these genes. Finally, colocalisation of FBLN5, MFAP4 and LTBP2 with elastic fibres was demonstrated in lung tissue. Conclusions We identified a clear gene signature for elastogenesis in COPD and propose FBLN5 as a novel player in tissue repair in COPD.


American Journal of Respiratory and Critical Care Medicine | 2014

Untargeted Lipidomic Analysis in Chronic Obstructive Pulmonary Disease. Uncovering Sphingolipids

Eef D. Telenga; Roland Hoffmann; Ruben t'Kindt; Susan J. M. Hoonhorst; Brigitte Willemse; Antoon J. M. van Oosterhout; Hilde Heijink; Maarten van den Berge; Lucie Jorge; Pat Sandra; Dirkje S. Postma; Koen Sandra; Nicolaas ten Hacken

RATIONALE Cigarette smoke is the major risk factor in the development of chronic obstructive pulmonary disease (COPD). Lipidomics is a novel and emerging research field that may provide new insights in the origins of chronic inflammatory diseases, such as COPD. OBJECTIVES To investigate whether expression of the sputum lipidome is affected by COPD or cigarette smoking. METHODS Lipid expression was investigated with liquid chromatography and high-resolution quadrupole time-of-flight mass spectrometry in induced sputum comparing smokers with and without COPD, and never-smokers. Changes in lipid expression after 2-month smoking cessation were investigated in smokers with and without COPD. MEASUREMENTS AND MAIN RESULTS More than 1,500 lipid compounds were identified in sputum. The class of sphingolipids was significantly higher expressed in smokers with COPD than in smokers without COPD. At single compound level, 168 sphingolipids, 36 phosphatidylethanolamine lipids, and 5 tobacco-related compounds were significantly higher expressed in smokers with COPD compared with smokers without COPD. The 13 lipids with a high fold change between smokers with and without COPD showed high correlations with lower lung function and inflammation in sputum. Twenty (glyco)sphingolipids and six tobacco-related compounds were higher expressed in smokers without COPD compared with never-smokers. Two-month smoking cessation reduced expression of 26 sphingolipids in smokers with and without COPD. CONCLUSIONS Expression of lipids from the sphingolipid pathway is higher in smokers with COPD compared with smokers without COPD. Considering their potential biologic properties, they may play a role in the pathogenesis of COPD.

Collaboration


Dive into the Maarten van den Berge's collaboration.

Top Co-Authors

Avatar

Dirkje S. Postma

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Wim Timens

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Nick H. T. ten Hacken

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Irene H. Heijink

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Alen Faiz

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Pieter S. Hiemstra

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Corry-Anke Brandsma

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Don D. Sin

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Eef D. Telenga

University Medical Center Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge