Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maarten van Ginkel is active.

Publication


Featured researches published by Maarten van Ginkel.


Euphytica | 1996

CIMMYT’s approach to breeding for wide adaptation

Hans-Joachim Braun; S. Rajaram; Maarten van Ginkel

The wheat area in developing countries, including China, is around 100 million ha. To address the needs of these very diverse wheat growing areas, CIMMYT has defined 12 wheat mega-environments (ME). A ME is defined as broad, not necessarily continuous often transcontinental area with similar biotic and abiotic stresses, cropping systems and consumer preferences. The factors describing each ME are presented.


Genetics | 2008

Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines.

M. Imtiaz; Francis C. Ogbonnaya; Jason Oman; Maarten van Ginkel

Aegilops tauschii, the wild relative of wheat, has stronger seed dormancy, a major component of preharvest sprouting resistance (PHSR), than bread wheat. A diploid Ae. tauschii accession (AUS18836) and a tetraploid (Triticum turgidum L. ssp. durum var. Altar84) wheat were used to construct a synthetic wheat (Syn37). The genetic architecture of PHS was investigated in 271 BC1F7 synthetic backcross lines (SBLs) derived from Syn37/2*Janz (resistant/susceptible). The SBLs were evaluated in three environments over 2 years and PHS was assessed by way of three measures: the germination index (GI), which measures grain dormancy, the whole spike assay (SI), which takes into account all spike morphology, and counted visually sprouted seeds out of 200 (VI). Grain color was measured using both Chroma Meter- and NaOH-based approaches. QTL for PHSR and grain color were mapped and their additive and epistatic effects as well as their interactions with environment were estimated by a mixed linear-model approach. Single-locus analysis following composite interval mapping revealed four QTL for GI, two QTL for SI, and four QTL for VI on chromosomes 3DL and 4AL. The locus QPhs.dpiv-3D.1 on chromosome 3DL was tightly linked to the red grain color (RGC) at a distance of 5 cM. The other locus on chromosome 3D, “QPhs.dpiv-3D.2” was independent of RGC locus. Two-locus analysis detected nine QTL with main effects and 18 additive × additive interactions for GI, SI, and VI. Two of the nine main effects QTL and two epistatic QTL showed significant interactions with environments. Both additive and epistatic effects contributed to phenotypic variance in PHSR and the identified markers are potential candidates for marker-assisted selection of favorable alleles at multiple loci. SBLs derived from Ae. tauschii proved to be a promising tool to dissect, introgress, and pyramid different PHSR genes into adapted wheat genetic backgrounds. The enhanced expression of PHS resistance in SBLs enabled us to develop white PHS-resistant wheat germplasm from the red-grained Ae. tauschii accession.


Euphytica | 1996

CIMMYT's approach to breed for drought tolerance

S. Rajaram; Hans-Joachim Braun; Maarten van Ginkel

SummaryAbout 32% of the 99 million ha wheat grown in developing countries experiences varying levels of drought stress. Three major drought types have been identified: Late drought (LD) is common in the Mediterranean region, early drought (ED) is found in Latin America and wheat is produced on residual soil moisture (RM) in the Indian subcontinent and part of Australia. Until 1983, CIMMYT selected all germplasm under near optimum conditions for its yield potential and tested only advanced lines under drought. In spite of many critics, this approach proved to be successful, since in the mid 80s CIMMYT germplasm was grown on 45% of the wheat area in LC with annual rainfall from 300–500 mm and on 21% in areas with less than 300 mm. Since 1983, CIMMYTs drought breeding methodology is to alternate segregating populations between drought stressed and fully irrigated conditions (FI) and to test advanced lines under a line source irrigation system. To compare the efficiency of these approach, yield of four, mostly leading varieties, from each of the regions with LD, ED, RM, and FI and twelve recent CIMMYT cultivars selected for high yield under FI and RM conditions (ALT) were compared under four different moisture regimes (FI, LD, ED, and RM) in 89–90 and 90–91 in Yaqui Valley, Mexico. Genotypic correlation between yield and days to flowering, days to maturity, height, grains m-2, TKW, test weight and grain fill period were calculated.Mean grain yield of the four best lines in the ALT group was highest under all moisture stress regimes, followed by the FI-group. However, the highest yielding cultivar within each moisture regime was from the FI-group under FI, from the LD-group under LD, and from the ALT-group under ED and RM conditions. Estimates for genetic advance suggest that FI is the best environment for increasing grain yield even in all three drought environments. This indicates that yield potential per se is beneficial also in drought environments. The highest yield in drought environments was realized by the CIM cultivars selected under FI and RM. Simultaneous evaluation of the germplasm under near optimum conditions, to utilize high heritabilities and identify lines with high yield potential, and under stress conditions to preserve alleles for drought tolerance seem at present the best strategy.


Euphytica | 2007

Yield of synthetic backcross-derived lines in rainfed environments of Australia

Francis C. Ogbonnaya; Gouyou Ye; Richard Trethowan; Fernanda Dreccer; Douglas Lush; John Shepperd; Maarten van Ginkel

Wheat is one of the major food crops in the world. It is Australia’s largest crop and most important agricultural commodity. In Australia the crop is grown under rainfed conditions with inherently important regional environmental differences; wheat growing areas are characterized by winter dominant rainfall in southern and western Australia and summer rainfall in northern Australia. Maximizing yield potential across these diverse regions is dependent upon managing, either genetically or agronomically, those factors in the environment that limit yield. The potential of synthetic backcross lines (SBLs) to increase yield in the diverse agroecological zones of Australia was investigated. Significant yield advantages were found for many of the SBLs across diverse environments. Depending on the environment, the yield of the SBLs ranged from 8% to 30% higher than the best local check in Australia. Apart from adaptation to semiarid water stressed conditions, some SBLs were also found to be significantly higher yielding under more optimal (irrigated) conditions. The four testing environments were classified into two groups, with the northern and southern environments being in separate groups. An elite group of SBLs was identified that exhibited broad adaptation across all diverse Australian environments included in this study. Other SBLs showed specific adaptation to either northern or southern Australia. This study showed that SBLs are likely to provide breeders with the opportunity to significantly improve wheat yield beyond what was previously possible in a number of diverse production environments.


Euphytica | 2004

Effect of environment and genotype on bread-making quality of spring-sown spring wheat cultivars in China

Zhang Yong; He Zhonghu; Guoyou Ye; Zhang Ai-min; Maarten van Ginkel

Improvement of end-use quality in bread wheat depends on a thorough understanding of current wheat quality and the influences of genotype (G), environment (E), and genotype by environment interaction (G × E) on quality traits. Thirty-nine spring-sown spring wheat (SSSW) cultivars and advanced lines from China were grown in four agro-ecological zones comprising seven locations during the 1998 and 1999 cropping seasons. Data on 12 major bread-making quality traits were used to investigate the effect of G, E, and G × E on these traits. Wide range variability for protein quantity and quality, starch quality parameters and milling quality in Chinese SSSW was observed. Genotype and environment were found to significantly influence all quality parameters as major effects. Kernel hardness, flour yield, Zeleny sedimentation value and mixograph properties were mainly influenced by the genetic variance components, while thousand kernel weight, test weight, and falling number were mostly influenced by the environmental variance components. Genotype, environment, and their interaction had important effects on test weight, mixing development time and RVA parameters. Cultivars originating from Zone VI (northeast) generally expressed high kernel hardness, good starch quality, but poor milling and medium to weak mixograph performance; those from Zone VII (north) medium to good gluten and starch quality, but low milling quality; those from Zone VIII (central northwest) medium milling and starch quality, and medium to strong mixograph performance; those from Zone IX (western/southwestern Qinghai-Tibetan Plateau) medium milling quality, but poor gluten strength and starch parameters; and those from Zone X (northwest) high milling quality, strong mixograph properties, but low protein content. Samples from Harbin are characterized by good gluten and starch quality, but medium to poor milling quality; those from Hongxinglong by strong mixograph properties, medium to high milling quality, but medium to poor starch quality and medium to low protein content; those from Hohhot by good gluten but poor milling quality; those from Linhe by weak gluten quality, medium to poor milling quality; those from Lanzhou by poor bread-making and starch quality; those from Yongning by acceptable bread-making and starch quality and good milling quality; and those from Urumqi by good milling quality, medium gluten quality and good starch pasting parameters. Our findings suggest that Chinese SSSW quality could be greatly enhanced through genetic improvement for targeted well-characterized production environments.


Euphytica | 2002

Identification of QTLs for BYDV tolerance in bread wheat

Ligia Ayala; Monique Henry; Maarten van Ginkel; Ravi P. Singh; Beat Keller; Mireille Khairallah

We searched for QTLs involved in tolerance to barley yellow dwarf (BYD), a serious viral disease of small grain cereals in two wheat populations, Opata × Synthetic (ITMI)and Frontana × INIA66 (F × I), for which marker data had previously been generated. The populations were evaluated in replicated field trials under artificial inoculation with a BYDV-PAV-Mex isolate and under disease-free conditions. Disease symptoms (yellowing, dwarfism and biomass reduction) were visually recorded and agronomic traits (number of tillers,height, biomass, yield and thousand-kernel weight) were measured on five plants per plot. Phenotypic data on all evaluated traits showed normal distribution with high correlation between visual estimates and measured values. Heritabilities were mostly moderate to high in the 114 lines of the ITMI population, and from low to moderate in the 117 lines of the F × I population. QTL analyses were based on genetic maps containing 443 loci for the ITMI population and 317 loci for the F × I population. Using composite interval mapping, 22 QTLs in the ITMI population and seven in the F × I population were detected, explaining9.8–43.3% of total phenotypic variation (σ2P)per agronomic trait in the first population, and 4.1–13.7% in the second. Individual QTLs explained less than 15.8%of σ2P. In the F × I population a minor QTL explaining 7% of σ2P for yellowing was detected on the short arm of 7D, linked to leaf tip necrosis, a morphological marker for linked genes Bdv1, Yr18 andLr34. A QTL consistently detected for several traits on 2D in the ITMI population and on the short arm of group 6 chromosome(6S) in F × I explained 10–15% of σ2P. The large number of QTLs having mostly small effects and the continuous distribution of all evaluated traits confirmed the polygenic nature and complexity of BYD tolerance in wheat.


Food Security | 2013

An integrated agro-ecosystem and livelihood systems approach for the poor and vulnerable in dry areas

Maarten van Ginkel; Jeffrey Sayer; Fergus L. Sinclair; Aden Aw-Hassan; Deborah A. Bossio; Peter Q. Craufurd; Mohammed El Mourid; Nasri Haddad; David A. Hoisington; Nancy L. Johnson; Carlos U. León Velarde; Victor Mares; Andrew G. Mude; A. Nefzaoui; Andrew D. Noble; K. P. C. Rao; Rachid Serraj; Shirley A. Tarawali; R. Vodouhè; Rodomiro Ortiz

More than 400 million people in the developing world depend on dryland agriculture for their livelihoods. Dryland agriculture involves a complex combination of productive components: staple crops, vegetables, livestock, trees and fish interacting principally with rangeland, cultivated areas and watercourses. Managing risk and enhancing productivity through diversification and sustainable intensification is critical to securing and improving rural livelihoods. The main biophysical constraints are natural resource limitations and degradation, particularly water scarcity and encroaching desertification. Social and economic limitations, such as poor access to markets and inputs, weak governance and lack of information about alternative production technologies also limit the options available to farmers. Past efforts to address these constraints by focusing on individual components have either not been successful or are now facing a declining rate of impact, indicating the need for new integrated approaches to research for development of dryland systems. This article outlines the characteristics of such an approach, integrating agro-ecosystem and livelihoods approaches and presents a range of empirical examples of its application in dryland contexts. The authors draw attention to new insights about the design of research required to accelerate impact by integrating across disciplines and scales.


European Journal of Plant Pathology | 1990

Identification of resistance genes to Puccinia striiformis in seedlings of Ethiopian and CIMMYT bread wheat varieties and lines

Ayele Badebo; Ron W. Stubbs; Maarten van Ginkel; Getinet Gebeyehu

In a controlled environment, the reaction was observed of 42 bread wheat varieties and lines inoculated with 19 isolates of yellow rust differing in their virulence to 20 differential varieties. Five varieties and lines showed resistance to all isolates. The remaining ones appeared to have the genesYr2, Yr3, Yr4, Yr6, Yr7, Yr9 andYrA, either singly or in combination.Yr9 derived from rye was present in 67% of the varieties and lines.Yr4 is the only effective gene in that material as, in Eastern and Central Africa, yellow rust has virulence to the otherYr genes. Recognition of virulence toYr genes is enhanced by the use of a supplemental set of differential varieties supposedly carrying a single gene.SamenvattingOnder geconditioneerde klimaatsomstandigheden zijn 42 Ethiopische en CIMMYT rassen en lijnen van broodtarwe (Triticum aestivum) in het kiemplantstadium geïnoculeerd met 19 isolaten van gele roest die onderling verschilden in hun pathogeniteit voor 20 differentiërende tarwerassen waarvan de resistantie-achtergrond bekend is. De genom-gen relatie is toegepast om resistentiegenen te identificeren. Vier rassen en lijnen bleken resistent te zijn tegen alle isolaten. Verondersteld wordt dat hun resistentie berust op genen die niet eerder herkend waren of op een combinatie van bekende genen die niet compatibel was met de gebruikte isolaten. In het overige tarwemateriaal kon de aanwezigheid worden aangegeven van de resistentiegenenYr2, Yr3, Yr4, Yr6, Yr7, Yr9 enYrA. Het van rogge afkomstige en door het CIMMYT veel gebruikte resistentiegenYr9 was in 28 rassen en lijnen (67%) aanwezig. In het onderzochte tarwemateriaal isYr4 het enige voor Oost en Centraal Afrika effectieve resistentiegen omdat de daar voorkomende gele roest pathogeniteit bezit voor de overige genen. Het herkennen van pathogeniteit van gele roest voor bepaalde resistentiegenen is verbeterd door het toevoegen van tarwerassen met monogene resistentie aan het internatinale gebruikte tarwesortiment voor de determinatie van gele-roestfysios.


Euphytica | 2006

Pattern analysis on grain yield performance of Chinese and CIMMYT spring wheat cultivars sown in China and CIMMYT

Yong Zhang; Zhonghu He; Aimin Zhang; Maarten van Ginkel; Guoyou Ye

Understanding the relationships among testing environments is essential for better targeting cultivars to production environments. To identify patterns of cultivar, environment, cultivar-by-environment interactions, and opportunities for indirect selection for grain yield, a set of 25 spring wheat cultivars from China and the International Maize and Wheat Improvement Center (CIMMYT) was evaluated in nine environments in China and four management environments at CIMMYT in Cd. Obregon, Mexico, during two wheat seasons. Genetic background and original environment were the main factors influencing grain yield performance of the cultivars. Baviacora M 92, Xinchun 2 and Xinchun 6 showed relatively more stable and higher grain yields, whereas highly photoperiod sensitive cultivars Xinkehan 9, Kefeng 6 and Longmai 19 proved consistently inferior across environments, except in Harbin and Keshan, the two high latitude environments. Longmai 26, also from high latitude environments in the north-eastern Heilongjiang province, was however probably not as photoperiodicly sensitive as other cultivars from that region, and produced much higher grain yield and expressed a broader adaptation. None of the environments reported major diseases. Pattern analyses revealed that photoperiod response and planting option on beds were the two main factors underlying the observed interactions for grain yield. The production environment of planting on the flat in Mexico grouped together with Huhhot and Urumqi in both wheat seasons, indicating an indirect response to selection for grain yield in this CIMMYT managed environment could benefit the two Chinese environments. Both the environment of planting on the flat with Chinese Hejin and Yongning, and the three CIMMYT environments planting on raised beds with Chinese Yongning grouped together only in one season, showing that repeatability may not be stable in this case.


Functional Plant Biology | 2001

The influence of glume pubescence on spikelet temperature of wheat under freezing conditions

Benoit Maes; Richard Trethowan; Matthew P. Reynolds; Maarten van Ginkel; Bent Skovmand

Synthetic hexaploid wheat lines possessing pubescent glumes were observed to suffer less frost damage during flowering than non-pubescent plants, after experiencing a damaging frost in the field during April 1997. In order to test the potential advantage conferred by glume pubescence, pubescent and non-pubescent plants were selected from a collection of synthetic hexaploid wheat lines, as well as from F 4 -derived F 7 lines selected from crosses between pubescent synthetic parents and non-pubescent elite spring bread wheat lines. Comparisons of floret temperature between pubescent and non-pubescent plants were carried out in a controlled temperature chamber. Freezing was determined by the appearance of an exotherm, the point in time at which water changed from liquid to solid phase. Flowering plants grown in pots were subjected to a 6-h period of temperature change ranging from 20 to –4˚C. Floret temperature was measured using micro-thermocouples attached to a data logger. Results indicated that the temperature of pubescent florets was higher than that of their non-pubescent equivalents. Significant temperature differences between the florets of pubescent and non-pubescent plants varied between 0.25 and 0.47˚C when the floret temperature of non-pubescent plants reached 0˚C. The appearance of the exotherm was delayed by as much as 3.27 min when pubescence was present. Pubescent plants also produced a higher number of grains per spikelet compared to non-pubescent plants. These observations suggest that glume pubescence is a factor that will influence the damaging effects of frost at or following anthesis.

Collaboration


Dive into the Maarten van Ginkel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Crossa

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar

S. Rajaram

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar

Guoyou Ye

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

I. H. DeLacy

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Ravi P. Singh

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiankang Wang

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar

Ky L. Mathews

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar

Wolfgang H. Pfeiffer

International Maize and Wheat Improvement Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge