Maartje van den Biggelaar
University of Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maartje van den Biggelaar.
Nature Protocols | 2012
Javier Martin-Ramirez; Menno Hofman; Maartje van den Biggelaar; Robert P. Hebbel; Jan Voorberg
Blood outgrowth endothelial cells (BOECs) are important tools when investigating diagnostic and therapeutic approaches for vascular disease. In this protocol, mononuclear cells are isolated from peripheral blood and plated on type I collagen at ∼135,000 cells per cm2 in endothelial cell differentiation medium. On average, 0.34 colonies of endothelial cells per milliliter of blood can be obtained. Colonies of endothelial cells become visible after 14–28 d. Upon confluence, these rapidly expanding colonies can be passaged and have been shown to propagate up to 1018-fold. Isolated BOECs are phenotypically similar to vascular endothelial cells, as revealed by their cobblestone morphology, the presence of endothelial cell–specific Weibel-Palade bodies and the expression of endothelial cell markers such as VE-cadherin. The protocol presented here also provides a particularly useful tool for the ex vivo assessment of endothelial cell function from patients with different vascular abnormalities.
The International Journal of Biochemistry & Cell Biology | 2011
Henriet Meems; Maartje van den Biggelaar; M.G. Rondaij; Carmen van der Zwaan; Koen Mertens; Alexander B. Meijer
Factor VIII (FVIII) catabolism has been demonstrated to involve LDL receptor-related protein (LRP). We have established that antibody fragment KM33 inhibits cofactor function of FVIII by interacting with the membrane binding region 2092-2093 of the C1 domain. As KM33 also inhibits LRP-dependent uptake of FVIII, we now assessed the role of region 2092-2093 for LRP-dependent endocytosis. For this purpose, we employed functional fluorescent FVIII-YFP or -GFP derivatives and U87MG cells which express high levels of LRP. Confocal microscopy studies and flow cytometry analysis combined with siRNA technology showed that the fluorescent FVIII derivatives are indeed effectively internalized by U87MG cells in a LRP-dependent manner. Competition experiments employing an antagonist of the LDL receptor family members revealed that there is a cell surface binding event for FVIII, which is independent of LRP. Cell surface binding proved to be less effective for the FVIII-YFP variants K2092A, F2093A and K2092A/F2093A. Surface plasmon resonance analysis showed that these substitutions affect LRP binding as well. Finally, flow cytometry analysis revealed a major reduction of endocytic uptake of these FVIII-YFP variants. Our results demonstrate that C1 domain residues 2092-2093 are of major importance for FVIII endocytosis by contributing to cell surface binding and receptor binding.
Haematologica | 2009
Maartje van den Biggelaar; Eveline A.M. Bouwens; Neeltje A. Kootstra; Robert P. Hebbel; Jan Voorberg; Koen Mertens
In this study, the authors explored the feasibility of blood outgrowth endothelial cells as a cellular FVIII delivery device with particular reference to long-term production levels, intracellular storage in Weibel-Palade bodies and agonist-induced regulated secretion. The findings of this ex vivo study open a new avenue towards gene therapy for hemophilia A. Background Gene therapy provides an attractive alternative for protein replacement therapy in hemophilia A patients. Recent studies have shown the potential benefit of directing factor (F)VIII gene delivery to cells that also express its natural carrier protein von Willebrand factor (VWF). In this study, we explored the feasibility of blood outgrowth endothelial cells as a cellular FVIII delivery device with particular reference to long-term production levels, intracellular storage in Weibel-Palade bodies and agonist-induced regulated secretion. Design and Methods Human blood outgrowth endothelial cells were isolated from peripheral blood collected from healthy donors, transduced at passage 5 using a lentiviral vector encoding human B-domain deleted FVIII-GFP and characterized by flow cytometry and confocal microscopy. Results Blood outgrowth endothelial cells displayed typical endothelial morphology and expressed the endothelial-specific marker VWF. Following transduction with a lentivirus encoding FVIII-GFP, 80% of transduced blood outgrowth endothelial cells expressed FVIII-GFP. Levels of FVIII-GFP positive cells declined slowly upon prolonged culturing. Transduced blood outgrowth endothelial cells expressed 1.6±1.0 pmol/1×106 cells/24h FVIII. Morphological analysis demonstrated that FVIII-GFP was stored in Weibel-Palade bodies together with VWF and P-selectin. FVIII levels were only slightly increased following agonist-induced stimulation, whereas a 6- to 8-fold increase of VWF levels was observed. Subcellular fractionation revealed that 15–22% of FVIII antigen was present within the dense fraction containing Weibel-Palade bodies. Conclusions We conclude that blood outgrowth endothelial cells, by virtue of their ability to store a significant portion of synthesized FVIII-GFP in Weibel-Palade bodies, provide an attractive cellular on-demand delivery device for gene therapy of hemophilia A.
Journal of Biological Chemistry | 2013
Esther Bloem; Maartje van den Biggelaar; Aleksandra Wroblewska; Jan Voorberg; Johan H. Faber; Marianne Kjalke; Henning R. Stennicke; Koen Mertens; Alexander B. Meijer
Background: Antibody KM33 blocks factor VIII (FVIII) endocytosis and phospholipid binding. Results: Hydrogen-deuterium exchange mass spectrometry reveals that KM33 binds C1 domain spikes 2092–2093 and 2158–2159. Glycosylated FVIII-R2159N shows reduced endocytosis and decreased binding to phospholipid membranes with low phosphatidylserine content. Conclusion: Spikes 2092–2093 and 2158–2159 modulate FVIII endocytosis and phospholipid binding. Significance: Novel insight is obtained about the role of the C1 domain for FVIII biology. The C1 domain of factor VIII (FVIII) has been implicated in binding to multiple constituents, including phospholipids, von Willebrand factor, and low-density lipoprotein receptor-related protein (LRP). We have previously described a human monoclonal antibody called KM33 that blocks these interactions as well as cellular uptake by LRP-expressing cells. To unambiguously identify the apparent “hot spot” on FVIII to which this antibody binds, we have employed hydrogen-deuterium exchange mass spectrometry. The results showed that KM33 protects FVIII regions 2091–2104 and 2157–2162 from hydrogen-deuterium exchange. These comprise the two C1 domain spikes 2092–2093 and 2158–2159. Spike 2092–2093 has been demonstrated recently to contribute to assembly with lipid membranes with low phosphatidylserine (PS) content. Therefore, spike 2158–2159 might serve a similar role. This was assessed by replacement of Arg-2159 for Asn, which introduces a motif for N-linked glycosylation. Binding studies revealed that the purified, glycosylated R2159N variant had lost its interaction with antibody KM33 but retained substantial binding to von Willebrand factor and LRP. Cellular uptake of the R2159N variant was reduced both by LRP-expressing U87-MG cells and by human monocyte-derived dendritic cells. FVIII activity was virtually normal on membranes containing 15% PS but reduced at low PS content. These findings suggest that the C1 domain spikes 2092–2093 and 2158–2159 together modulate FVIII membrane assembly by a subtle, PS-dependent mechanism. These findings contribute evidence in favor of an increasingly important role of the C1 domain in FVIII biology.
Blood | 2012
Aleksandra Wroblewska; Simon D. van Haren; Eszter Herczenik; Paul Kaijen; Aleksandra Ruminska; Sheng-Yu Jin; X. Long Zheng; Maartje van den Biggelaar; Anja ten Brinke; Alexander B. Meijer; Jan Voorberg
Development of neutralizing Abs to blood coagulation factor VIII (FVIII) provides a major complication in hemophilia care. In this study we explored whether modulation of the uptake of FVIII by APCs can reduce its intrinsic immunogenicity. Endocytosis of FVIII by professional APCs is significantly blocked by mAb KM33, directed toward the C1 domain of FVIII. We created a C1 domain variant (FVIII-R2090A/K2092A/F2093A), which showed only minimal binding to KM33 and retained its activity as measured by chromogenic assay. FVIII-R2090A/K2092A/F2093A displayed a strongly reduced internalization by human monocyte-derived dendritic cells and macrophages, as well as murine BM-derived dendritic cells. We subsequently investigated the ability of this variant to induce an immune response in FVIII-deficient mice. We show that mice treated with FVIII-R2090A/K2092A/F2093A have significantly lower anti-FVIII Ab titers and FVIII-specific CD4(+) T-cell responses compared with mice treated with wild-type FVIII. These data show that alanine substitutions at positions 2090, 2092, and 2093 reduce the immunogenicity of FVIII. According to our findings we hypothesize that FVIII variants displaying a reduced uptake by APCs provide a novel therapeutic approach to reduce inhibitor development in hemophilia A.
Blood | 2013
Rachel T. McGrath; Maartje van den Biggelaar; Barry Byrne; Jamie M. O'Sullivan; Orla Rawley; Richard O'Kennedy; Jan Voorberg; Roger J. S. Preston; James S. O'Donnell
Platelet-von Willebrand factor (VWF) is stored within α-granules and accounts for ∼20% of total VWF in platelet-rich plasma. This platelet-VWF pool is distinct from plasma-VWF and is enriched in high molecular weight multimers (HMWM). Previous studies have described significant functional discrepancies between platelet-VWF and plasma-VWF; however, the molecular basis of these differences is not well understood. We have characterized terminal glycan expression on platelet-VWF. Our findings demonstrate that platelet-VWF exists as a distinct natural glycoform. In particular, N-linked sialylation is markedly reduced (>50%) compared with plasma-VWF. Moreover, unlike plasma-VWF, platelet-VWF does not express AB blood group determinants, although precursor H antigen expression is similar to that on plasma-VWF. Because of this differential glycosylation, platelet-VWF exhibits specific resistance to ADAMTS13 proteolysis. Thus platelet activation at sites of vascular injury results in the release of high local concentrations of HMWM platelet-VWF that is more resistant to ADAMTS13, thereby facilitating platelet-plug formation.
Blood | 2014
Maartje van den Biggelaar; Juan Ramon Hernandez-Fernaud; Bart L. van den Eshof; Lisa J. Neilson; Alexander B. Meijer; Koenraad Mertens; Sara Zanivan
Thrombin is the key serine protease of the coagulation cascade and a potent trigger of protease-activated receptor 1 (PAR1)-mediated platelet aggregation. In recent years, PAR1 has become an appealing target for anticoagulant therapies. However, the inhibitors that have been developed so far increase bleeding risk in patients, likely because they interfere with endogenous PAR1 signaling in the endothelium. Because of its complexity, thrombin-induced signaling in endothelial cells has remained incompletely understood. Here, we have combined stable isotope amino acids in cell culture, affinity-based phosphopeptide enrichment, and high-resolution mass spectrometry and performed a time-resolved analysis of the thrombin-induced signaling in human primary endothelial cells. We identified 2224 thrombin-regulated phosphorylation sites, the majority of which have not been previously related to thrombin. Those sites were localized on proteins that are novel to thrombin signaling, but also on well-known players such as PAR1, Rho-associated kinase 2, phospholipase C, and proteins related to actin cytoskeleton, cell-cell junctions, and Weibel-Palade body release. Our study provides a unique resource of phosphoproteins and phosphorylation sites that may generate novel insights into an intimate understanding of thrombin-mediated PAR signaling and the development of improved PAR1 antagonists that affect platelet but not endothelial cell function.
Blood | 2011
Eveline A.M. Bouwens; Marjon J. Mourik; Maartje van den Biggelaar; Jeroen Eikenboom; Jan Voorberg; Karine M. Valentijn; Koen Mertens
In endothelial cells, von Willebrand factor (VWF) multimers are packaged into tubules that direct biogenesis of elongated Weibel-Palade bodies (WPBs). WPB release results in unfurling of VWF tubules and assembly into strings that serve to recruit platelets. By confocal microscopy, we have previously observed a rounded morphology of WPBs in blood outgrowth endothelial cells transduced to express factor VIII (FVIII). Using correlative light-electron microscopy and tomography, we now demonstrate that FVIII-containing WPBs have disorganized, short VWF tubules. Whereas normal FVIII and FVIII Y1680F interfered with formation of ultra-large VWF multimers, release of the WPBs resulted in VWF strings of equal length as those from nontransduced blood outgrowth endothelial cells. After release, both WPB-derived FVIII and FVIII Y1680F remained bound to VWF strings, which however had largely lost their ability to recruit platelets. Strings from nontransduced cells, however, were capable of simultaneously recruiting exogenous FVIII and platelets. These findings suggest that the interaction of FVIII with VWF during WPB formation is independent of Y1680, is maintained after WPB release in FVIII-covered VWF strings, and impairs recruitment of platelets. Apparently, intra-cellular and extracellular assembly of FVIII-VWF complex involves distinct mechanisms, which differ with regard to their implications for platelet binding to released VWF strings.
Haematologica | 2016
Roel P. Gazendam; Annemarie van de Geer; John L. van Hamme; Anton Tool; Dieke J. van Rees; Cathelijn Aarts; Maartje van den Biggelaar; Floris van Alphen; Paul Verkuijlen; Alexander B. Meijer; Hans Janssen; Dirk Roos; Timo K. van den Berg; Taco W. Kuijpers
Granulocyte transfusions are used to treat neutropenic patients with life-threatening bacterial or fungal infections that do not respond to anti-microbial drugs. Donor neutrophils that have been mobilized with granulocyte-colony stimulating factor (G-CSF) and dexamethasone are functional in terms of antibacterial activity, but less is known about their fungal killing capacity. We investigated the neutrophil-mediated cytotoxic response against C. albicans and A. fumigatus in detail. Whereas G-CSF/dexamethasone-mobilized neutrophils appeared less mature as compared to neutrophils from untreated controls, these cells exhibited normal ROS production by the NADPH oxidase system and an unaltered granule mobilization capacity upon stimulation. G-CSF/dexamethasone-mobilized neutrophils efficiently inhibited A. fumigatus germination and killed Aspergillus and Candida hyphae, but the killing of C. albicans yeasts was distinctly impaired. Following normal Candida phagocytosis, analysis by mass spectrometry of purified phagosomes after fusion with granules demonstrated that major constituents of the antimicrobial granule components, including major basic protein (MBP), were reduced. Purified MBP showed candidacidal activity, and neutrophil-like Crisp-Cas9 NB4-KO-MBP differentiated into phagocytes were impaired in Candida killing. Together, these findings indicate that G-CSF/dexamethasone-mobilized neutrophils for transfusion purposes have a selectively impaired capacity to kill Candida yeasts, as a consequence of an altered neutrophil granular content.
Journal of Biological Chemistry | 2015
Maartje van den Biggelaar; Jesper Madsen; Johan H. Faber; Marleen G. Zuurveld; Carmen van der Zwaan; Ole Hvilsted Olsen; Henning R. Stennicke; Koen Mertens; Alexander B. Meijer
Background: It is unclear how the LDL receptor family binds large protein ligands. Results: HDX and lysine scanning identified factor (F)VIII regions and specific lysine residues binding low-density lipoprotein receptor-related protein 1 (LRP1). Conclusion: FVIII-LRP1 interaction involves multiple “hot-spot” lysine residues in the A3C1 domains. Significance: Our study sheds light on interactions of complex ligands with the LDL receptor family. Lysine residues are implicated in driving the ligand binding to the LDL receptor family. However, it has remained unclear how specificity is regulated. Using coagulation factor VIII as a model ligand, we now study the contribution of individual lysine residues in the interaction with the largest member of the LDL receptor family, low-density lipoprotein receptor-related protein (LRP1). Using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and SPR interaction analysis on a library of lysine replacement variants as two independent approaches, we demonstrate that the interaction between factor VIII (FVIII) and LRP1 occurs over an extended surface containing multiple lysine residues. None of the individual lysine residues account completely for LRP1 binding, suggesting an additive binding model. Together with structural docking studies, our data suggest that FVIII interacts with LRP1 via an extended surface of multiple lysine residues that starts at the bottom of the C1 domain and winds around the FVIII molecule.