Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maayan Barnea is active.

Publication


Featured researches published by Maayan Barnea.


Obesity | 2013

High Caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women

Daniela Jakubowicz; Maayan Barnea; Julio Wainstein; Oren Froy

Few studies examined the association between time‐of‐day of nutrient intake and the metabolic syndrome. Our goal was to compare a weight loss diet with high caloric intake during breakfast to an isocaloric diet with high caloric intake at dinner.


Endocrinology | 2009

High-Fat Diet Delays and Fasting Advances the Circadian Expression of Adiponectin Signaling Components in Mouse Liver

Maayan Barnea; Zecharia Madar; Oren Froy

The circadian clock controls energy homeostasis by regulating circadian expression and/or activity of enzymes involved in metabolism. Disruption of circadian rhythms may lead to obesity and metabolic disorders. We tested whether the biological clock controls adiponectin signaling pathway in the liver and whether fasting and/or high-fat (HF) diet affects this control. Mice were fed low-fat or HF diet and fasted on the last day. The circadian expression of clock genes and components of adiponectin metabolic pathway in the liver was tested at the RNA, protein, or enzyme activity level. In addition, serum levels of glucose, adiponectin, and insulin were measured. Under low-fat diet, adiponectin signaling pathway components exhibited circadian rhythmicity. However, fasting and HF diet altered this circadian expression; fasting resulted in a phase advance, and HF diet caused a phase delay. In addition, adenosine monophosphate-activated protein kinase levels were high during fasting and low during HF diet. Changes in the phase and daily rhythm of clock genes and components of adiponectin signaling pathway as a result of HF diet may lead to obesity and may explain the disruption of other clock-controlled output systems, such as blood pressure and sleep/wake cycle, usually associated with metabolic disorders.


Obesity | 2006

A High‐Fat Diet Has a Tissue‐Specific Effect on Adiponectin and Related Enzyme Expression

Maayan Barnea; Avi Shamay; Aliza H. Stark; Zecharia Madar

Objective: This study was designed to test whether adiponectin plays a role in diet‐induced obesity and insulin resistance and acts as a mediator to induce or inhibit specific metabolic pathways involved in lipid metabolism


Obesity | 2010

High-fat Diet Followed by Fasting Disrupts Circadian Expression of Adiponectin Signaling Pathway in Muscle and Adipose Tissue

Maayan Barnea; Zecharia Madar; Oren Froy

The circadian clock controls energy homeostasis by regulating circadian expression of proteins involved in metabolism. Disruption of circadian rhythms leads to obesity and metabolic disorders. Little is known regarding the control of the biological clock over adiponectin signaling pathway in adipose tissue, the adiponectin producer, and muscle, an adiponectin target tissue under fasting, low‐fat (LF), or high‐fat (HF) diet. Mice were fed LF or HF diet for 7 weeks and fasted on the last day. The circadian mRNA expression of clock genes and components of adiponectin metabolic pathway (mAdipoR1, mAdipoR2, mPparα, mPparγ, mAmpk, and mAcc) in the muscle and adipose tissue were tested. Using average daily levels of multiple time points around the circadian cycle, we assessed mRNA levels of the different adiponectin signaling components. In addition, serum glucose, adiponectin, and insulin were measured. Under LF diet, adiponectin signaling pathway components exhibited circadian rhythmicity at the mRNA levels. Fasting and HF diet followed by fasting disrupted this circadian expression causing a phase advance or delay, respectively. Changes were also found in the expression levels of adiponectin receptor, mAmpk, mAcc, mPparα, and mPparγ reflecting a defect in adiponectin signaling. As both peroxisome proliferator‐activated receptor α (PPARα) and mAMPK are linked to the core clock mechanism, they could mediate the disruptions seen in clock gene expression under HF diet. In turn, the circadian clock affects the daily rhythm of these adiponectin signaling components.


Biochimica et Biophysica Acta | 2012

Metformin affects the circadian clock and metabolic rhythms in a tissue-specific manner.

Maayan Barnea; Liyan Haviv; Roee Gutman; Nava Chapnik; Zecharia Madar; Oren Froy

Metformin is a commonly-used treatment for type 2 diabetes, whose mechanism of action has been linked, in part, to activation of AMP-activated protein kinase (AMPK). However, little is known regarding its effect on circadian rhythms. Our aim was to evaluate the effect of metformin administration on metabolism, locomotor activity and circadian rhythms. We tested the effect of metformin treatment in the liver and muscle of young lean, healthy mice, as obesity and diabetes disrupt circadian rhythms. Metformin led to increased leptin and decreased glucagon levels. The effect of metformin on liver and muscle metabolism was similar leading to AMPK activation either by liver kinase B1 (LKB1) and/or other kinases in the muscle. AMPK activation resulted in the inhibition of acetyl CoA carboxylase (ACC), the rate limiting enzyme in fatty acid synthesis. Metformin also led to the activation of liver casein kinase I α (CKIα) and muscle CKIε, known modulators of the positive loop of the circadian clock. This effect was mainly of phase advances in the liver and phase delays in the muscle in clock and metabolic genes and/or protein expression. In conclusion, our results demonstrate the differential effects of metformin in the liver and muscle and the critical role the circadian clock has in orchestrating metabolic processes.


Biochemical and Biophysical Research Communications | 2008

Glucose and insulin are needed for optimal defensin expression in human cell lines

Maayan Barnea; Zecharia Madar; Oren Froy

Many infections are associated with diabetes, as the ability of the body to fight pathogens is impaired. Recently, low levels of defensins have been found in diabetic rodents. However, whether hyperglycemia and/or insulin deficiency/insensitivity is the reason for the reduced defensin levels is still unknown. To study the functionality of the innate immune system during hyperglycemia, the expression levels of human beta-defensin-1 (hBD-1) was measured in human embryonic kidney (HEK-293) and colon adenocarcinoma (HCT-116) cells treated with different concentrations of glucose and insulin. Increasing concentrations of glucose enhanced hBD-1 expression and these levels were further elevated after insulin treatment. Insulin treatment also led to the up-regulation of human sodium/glucose transporter 1 (hSGLT1), which further increases intracellular glucose levels. Thus, our findings suggest for the first time that insulin signaling is important for hBD-1 optimal expression by elevating intracellular glucose levels and by mediating gene expression.


Clinical Science | 2013

Effects of caloric intake timing on insulin resistance and hyperandrogenism in lean women with polycystic ovary syndrome

Daniela Jakubowicz; Maayan Barnea; Julio Wainstein; Oren Froy

In women with PCOS (polycystic ovary syndrome), hyperinsulinaemia stimulates ovarian cytochrome P450c17α activity that, in turn, stimulates ovarian androgen production. Our objective was to compare whether timed caloric intake differentially influences insulin resistance and hyperandrogenism in lean PCOS women. A total of 60 lean PCOS women [BMI (body mass index), 23.7±0.2 kg/m²] were randomized into two isocaloric (~1800 kcal; where 1 kcal≈4.184 J) maintenance diets with different meal timing distribution: a BF (breakfast diet) (980 kcal breakfast, 640 kcal lunch and 190 kcal dinner) or a D (dinner diet) group (190 kcal breakfast, 640 kcal lunch and 980 kcal dinner) for 90 days. In the BF group, a significant decrease was observed in both AUC(glucose) (glucose area under the curve) and AUC(insulin) (insulin area under the curve) by 7 and 54% respectively. In the BF group, free testosterone decreased by 50% and SHBG (sex hormone-binding globulin) increased by 105%. GnRH (gonadotropin-releasing hormone)-stimulated peak serum 17OHP (17α-hydroxyprogesterone) decreased by 39%. No change in these parameters was observed in the D group. In addition, women in the BF group had an increased ovulation rate. In lean PCOS women, a high caloric intake at breakfast with reduced intake at dinner results in improved insulin sensitivity indices and reduced cytochrome P450c17α activity, which ameliorates hyperandrogenism and improves ovulation rate. Meal timing and distribution should be considered as a therapeutic option for women with PCOS.


Molecular and Cellular Endocrinology | 2015

The circadian clock machinery controls adiponectin expression

Maayan Barnea; Nava Chapnik; Yoni Genzer; Oren Froy

Adiponectin, an adipokine involved in glucose and lipid metabolism, exhibits a circadian manner of expression. Adiponectin expression is mediated by the helix-loop-helix transcription factor sterol regulatory element binding protein (SREBP)-1c. In this study, we tested whether the circadian clock helix-loop-helix transcription factors CLOCK and BMAL1 regulate adiponectin expression. We found that adiponectin expression is regulated by the clock through the circadian expression of its transcription factor peroxisome proliferator-activated receptor γ (PPARγ) and its co-activator PPARγ co-activator 1α (PGC1α) in mouse white adipose tissue and differentiated adipocytes. In addition, reconstitution of the core clock mechanism and siRNA experiments in cell culture suggest that the clock directly activates the adiponectin promoter and mediates its expression. In summary, adiponectin expression is regulated by the circadian clock and through the circadian expression of its transcription factor PPARγ and its co-activator PGC1α.


Diabetes Care | 2017

Influences of Breakfast on Clock Gene Expression and Postprandial Glycemia in Healthy Individuals and Individuals With Diabetes: A Randomized Clinical Trial

Daniela Jakubowicz; Julio Wainstein; Zohar Landau; Itamar Raz; Bo Ahrén; Nava Chapnik; Tali Ganz; Miriam Menaged; Maayan Barnea; Yosefa Bar-Dayan; Oren Froy

OBJECTIVE The circadian clock regulates glucose metabolism by mediating the activity of metabolic enzymes, hormones, and transport systems. Breakfast skipping and night eating have been associated with high HbA1c and postprandial hyperglycemia after lunch and dinner. Our aim was to explore the acute effect of breakfast consumption or omission on glucose homeostasis and clock gene expression in healthy individuals and individuals with type 2 diabetes. RESEARCH DESIGN AND METHODS In a crossover design, 18 healthy volunteers and 18 volunteers with 14.5 ± 1.5 years diabetes, BMI 30.7 ± 1.1 kg/m2, and HbA1c 7.6 ± 0.1% (59.6 ± 0.8 mmol/mol) were randomly assigned to a test day with breakfast and lunch (YesB) and a test day with only lunch (NoB). Postprandial clock and clock-controlled gene expression, plasma glucose, insulin, intact glucagon-like peptide 1 (iGLP-1), and dipeptidyl peptidase IV (DPP-IV) plasma activity were assessed after breakfast and lunch. RESULTS In healthy individuals, the expression level of Per1, Cry1, Rorα, and Sirt1 was lower (P < 0.05) but Clock was higher (P < 0.05) after breakfast. In contrast, in individuals with type 2 diabetes, Per1, Per2, and Sirt1 only slightly, but significantly, decreased and Rorα increased (P < 0.05) after breakfast. In healthy individuals, the expression level of Bmal1, Rorα, and Sirt1 was higher (P < 0.05) after lunch on YesB day, whereas the other clock genes remained unchanged. In individuals with type 2 diabetes, Bmal1, Per1, Per2, Rev-erbα, and Ampk increased (P < 0.05) after lunch on the YesB day. Omission of breakfast altered clock and metabolic gene expression in both healthy and individuals with type 2 diabetes. CONCLUSIONS Breakfast consumption acutely affects clock and clock-controlled gene expression leading to normal oscillation. Breakfast skipping adversely affects clock and clock-controlled gene expression and is correlated with increased postprandial glycemic response in both healthy individuals and individuals with diabetes.


The International Journal of Biochemistry & Cell Biology | 2014

Effect of metformin and lipid emulsion on the circadian gene expression in muscle cells.

Maayan Barnea; Tamar Cohen-Yogev; Nava Chapnik; Zecharia Madar; Oren Froy

The circadian clock influences nearly all aspects of metabolism. However, little is known regarding the effect of the energy status on circadian rhythms. Our aim was to test the effect of two opposing energy situations, metformin and lipid emulsion (LE), on clock and metabolic circadian expression in differentiated C2C12 myotubes. Metformin treatment led to depleted ATP levels accompanied by elevated NADH levels, whereas LE treatment led to increased ATP and NAD(+) levels. Nevertheless, both LE and metformin treatments activated the AMP-activated protein kinase (AMPK) pathway. In contrast, the effect on circadian rhythms was completely different. LE led to disrupted clock and metabolic gene expression, whereas metformin led to mainly high-amplitude shifted rhythms. Combination of metformin and LE led to an antagonistic effect on circadian gene expression. Although metformin and LE have an opposing effect on circadian gene expression and on the cellular energy status, they both lead to AMPK activation.

Collaboration


Dive into the Maayan Barnea's collaboration.

Top Co-Authors

Avatar

Oren Froy

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Zecharia Madar

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Nava Chapnik

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoni Genzer

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ari Elson

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge