Macarena Munoz
Autonomous University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Macarena Munoz.
Journal of Hazardous Materials | 2011
Macarena Munoz; Zahara M. de Pedro; J.A. Casas; Juan J. Rodriguez
Homogeneous Fenton-like (H(2)O(2)/Fe(3+)) oxidation proved to be highly efficient in the degradation of monochlorophenols but some important issues need to be considered depending on the operating conditions. When using the stoichiometric amount of H(2)O(2) and a dose of Fe(3+) in the range of 10-20mg/L, complete breakdown of 4-CP up to CO(2) and short-chain acids was achieved. Nevertheless, when substoichiometric amounts of H(2)O(2) or lower concentrations of iron were used, significant differences between the TOC measured and the calculated from the identified species were found. These differences were attributed to condensation byproducts, including chlorinated species, formed by oxidative coupling reactions. PCBs, dioxins and dichlorodiphenyl ethers were identified. A solid residue was also formed consisting mainly in carbon, oxygen and chlorine including also Fe. The occurrence of these highly toxic species must be carefully considered in the application of Fenton oxidation to wastewaters containing chlorophenols. The possibility of reducing costs by lowering the H(2)O(2) dose below the stoichiometric one needs to take this into account.
Critical Reviews in Environmental Science and Technology | 2015
Gema Pliego; Juan A. Zazo; Patricia García-Muñoz; Macarena Munoz; J.A. Casas; Juan J. Rodriguez
The implementation of increasingly stringent regulations for wastewater discharge has enforced research efforts toward either the implementation of novel treatments or the improvement of those presently available. The literature on the use of Fenton oxidation in wastewater treatment has established this method as one of the most effective and suitable process for the abatement of recalcitrant water pollutants. However, despite the many advantages of the conventional Fenton process, there are issues relative to pH modulation, the cost associated to H2O2 and catalyst consumption as well as to sludge disposal that limit a more extended full-scale application. In recent years, several solutions have been developed for the sake of improving Fenton (or Fenton-like) oxidation as a cost-effective technology. This paper presents a thorough review on the different ways of intensifying the Fenton by using radiation, electrochemistry, and/or heterogeneous catalysts, as well as by optimizing the main operating conditions in the conventional homogeneous system. The application of these enhanced technologies to synthetic and real industrial wastewaters is described and discussed.
Water Research | 2013
Macarena Munoz; Zahara M. de Pedro; J.A. Casas; Juan J. Rodriguez
Degradation of chlorophenols by a sequential combination of hydrodechlorination (HDC) and catalytic wet peroxide oxidation (CWPO) using a new magnetic Pd-Fe/γ-Al2O3 catalyst has been studied. This catalyst is active in both hydrodechlorination of chlorophenols and decomposition of H2O2 for the oxidation of organic compounds. The sequential combination of HDC and CWPO allows overcoming some of the drawbacks of both treatments applied independently. The HDC step achieves the complete dechlorination of chlorophenols, so that the subsequent CWPO does not lead to the formation of highly toxic chlorinated by-products and reduces significantly the organic load of the effluent. The results showed that the presence of iron in the Pd catalyst improved significantly its hydrodechlorination rate, achieving the complete dechlorination of chlorophenols in a short reaction time (≈ 15 min), giving rise to phenol and cyclohexanone. The CWPO of synthetic mixtures of phenol and cyclohexanone showed that a high phenol concentration promotes the oxidation of all the organic species, but the presence of cyclohexanone seems to hinder the formation of aromatic radicals limiting the effectiveness of the CWPO step. Therefore, the effective combination of HDC and CWPO requires that the HDC step achieves the complete dechlorination of chlorophenols but no further hydrogenation is needed. The Pd-Fe/γ-Al2O3 catalyst showed a high activity in both HDC and subsequent CWPO of chlorophenols being easily separated and recovered from the reaction medium due to its ferromagnetic properties. In spite of a moderate loss of activity, the complete dechlorination of chlorophenol and a negligible ecotoxicity of the final effluents were maintained upon successive applications of HDC + CWPO in a four-cycles test.
Angewandte Chemie | 2016
Gui-Rong Zhang; Macarena Munoz; Bastian J. M. Etzold
Developing cost-effective electrocatalysts for the oxygen reduction reaction (ORR) is a prerequisite for broad market penetration of low-temperature fuel cells. A major barrier stems from the poisoning of surface sites by nonreactive oxygenated species and the sluggish ORR kinetics on the Pt catalysts. Herein we report a facile approach to accelerating ORR kinetics by using a hydrophobic ionic liquid (IL), which protects Pt sites from surface oxidation, making the IL-modified Pt intrinsically more active than its unmodified counterpart. The mass activity of the catalyst is increased by three times to 1.01 A mg(-1) Pt @0.9 V, representing a new record for pure Pt catalysts. The enhanced performance of the IL-modified catalyst can be stabilized after 30 000 cycles. We anticipate these results will form the basis for an unprecedented perspective in the development of high-performing electrocatalysts for fuel-cell applications.
Chemosphere | 2014
Macarena Munoz; Gema Pliego; Zahara M. de Pedro; J.A. Casas; Juan J. Rodriguez
The application of the Fenton process for the treatment of sawmill wastewater has been investigated. The sawmill wastewater was characterized by a moderate COD load (≈3gL(-1)), high ecotoxicity (≈ 40 toxicity units) and almost negligible BOD/COD ratio (5×10(-3)) due to the presence of different fungicides such as propiconazole and 3-iodo-2-propynyl butyl carbamate, being the wastewater classified as non-biodegradable. The effect of the key Fenton variables (temperature (50-120°C), catalyst concentration (25-100 mg L(-1) Fe(3+)), H2O2 dose (1 and 2 times the stoichiometric dose) and the mode of H2O2 addition) on COD reduction and mineralization was investigated in order to fulfill the allowable local limits for industrial wastewater discharge and achieve an efficient consumption of H2O2 in short reaction times (1h). Increasing the temperature clearly improved the oxidation rate and mineralization degree, achieving 60% COD reduction and 50% mineralization at 120°C after 1h with the stoichiometric H2O2 dose and 25 mg L(-1) Fe(3+). The distribution of H2O2 in multiple additions throughout the reaction time was clearly beneficial avoiding competitive scavenging reactions and thus, achieving higher efficiencies of H2O2 consumption (XCOD ≈ 80%). The main by-products were non-toxic short-chain organic acids (acetic, oxalic and formic). Thus, the application of the Fenton process allowed reaching the local limits for industrial wastewater discharge into local sewer system at a relatively low cost.
ACS Applied Materials & Interfaces | 2015
Gui-Rong Zhang; Macarena Munoz; Bastian J. M. Etzold
High cost and poor stability of the oxygen reduction reaction (ORR) electrocatalysts are the major barriers for broad-based application of polymer electrolyte membrane fuel cells. Here we report a facile and scalable approach to improve Pt/C catalysts for ORR, by modification with small amounts of hydrophobic ionic liquid (IL). The ORR performance of these IL-modified catalysts can be readily manipulated by varying the degree of IL filling, leading to a 3.4 times increase in activity. Besides, the IL-modified catalysts exhibit substantially enhanced stability relative to Pt/C. The enhanced performance is attributed to the optimized microenvironment at the interface of Pt and electrolyte, where advantages stemming from an increased number of free sites, higher oxygen concentration in the IL and electrostatic stabilization of the nanoparticles develop fully, at the same time that the drawback of mass transfer limitation remains suppressed. These findings open a new avenue for catalyst optimization for next-generation fuel cells.
Journal of Hazardous Materials | 2017
Macarena Munoz; Francisco J. Mora; Zahara M. de Pedro; Silvia Álvarez-Torrellas; J.A. Casas; Juan J. Rodriguez
CWPO has proved to be effective for the treatment of representative pharmaceuticals (sulfamethoxazole, atenolol, metronidazole, diltiazem, trimethoprim and ranitidine) in different water matrices (ultrapure water, surface water, WWTP effluent and hospital wastewater). Complete removal of the pollutants and the aromatic intermediates was achieved using the stoichiometric dose of H2O2, a catalyst (Fe3O4/γ-Al2O3) load of 2gL-1, pH 3 and temperature of 50-75°C. Accordingly, the ecotoxicity was reduced to negligible values. The degradation was faster when the pharmaceuticals were together, being the reaction time for the elimination of the most refractory species (metronidazole) shortened from 4h to 1h. The mineralization of the drugs was fairly different, being the most reactive species those containing several aromatic rings (XTOC∼80%) and the most refractory that bearing an imidazolium ring (XTOC∼35%). The water matrix affected the kinetics of the process but in all cases complete conversion of the drugs was reached within 1h. The presence of dissolved organic matter (surface water) seemed to promote drugs degradation while the occurrence of inorganic ions (real WTTP and hospital effluents) partially inhibited it due to scavenging effects. Remarkably, the process was successfully operated at the typical concentrations of main micropollutant sources (μgL-1).
Water Science and Technology | 2017
Jefferson E. Silveira; Marcio Barreto-Rodrigues; Tais O. Cardoso; Gema Pliego; Macarena Munoz; Juan A. Zazo; J.A. Casas
This work studied the bimetallic nanoparticles Fe-Ag (nZVI-Ag) activated persulfate (PS) in aqueous solution using response surface methodology. The Box-Behnken design (BBD) was employed to optimize three parameters (nZVI-Ag dose, reaction temperature, and PS concentration) using 4-chlorophenol (4-CP) as the target pollutant. The synthesis of nZVI-Ag particles was carried out through a reduction of FeCl2 with NaBH4 followed by reductive deposition of Ag. The catalyst was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area. The BBD was considered a satisfactory model to optimize the process. Confirmatory tests were carried out using predicted and experimental values under the optimal conditions (50 mg L-1 nZVI-Ag, 21 mM PS at 57 °C) and the complete removal of 4-CP achieved experimentally was successfully predicted by the model, whereas the mineralization degree predicted (90%) was slightly overestimated against the measured data (83%).
Chemosphere | 2018
Julia Nieto-Sandoval; Macarena Munoz; Zahara M. de Pedro; J.A. Casas
Aqueous-phase catalytic hydrodechlorination (HDC) has been scarcely explored in the literature for the removal of chlorinated micropollutants. The aim of this work is to prove the feasibility of this technology for the fast and environmentally-friendly degradation of such kind of compounds. Diclofenac (DCF), a highly consumed anti-inflammatory drug, has been selected as the target pollutant given its toxicity and low biodegradability. The commercial Pd/Al2O3 (1% wt.) catalyst has been used due to its prominent role on this field. Complete degradation of DCF was achieved in a short reaction time (20 min) under ambient conditions (25 °C, 1 atm) at [DCF]0 = 68 μM; [Pd/Al2O3]0 = 0.5 g L-1 and H2 flow rate of 50 N mL min-1. Remarkably, the chlorinated intermediate (2-(2-chloroanilino)-phenylacetate (Cl-APA)) generated along reaction was completely removed at the same time, being the chlorine-free compound 2-anilinophenylacetate (APA) the only final product. A reaction scheme based on this consecutive pathway and a pseudo-first-order kinetic model have been proposed. An apparent activation energy of 43 kJ mol-1 was obtained, a comparable value to those previously reported for conventional organochlorinated pollutants. Remarkably, the catalyst exhibited a reasonable stability upon three successive uses, achieving the complete degradation of the drug and obtaining APA as the final product in 30 min. The evolution of ecotoxicity was intimately related to the disappearance of the chlorinated organic compounds and thus, the final HDC effluents were non-toxic. The versatility of the system was finally demonstrated in different environmentally-relevant matrices (wastewater treatment plant effluent and surface water).
ACS Catalysis | 2018
Gui-Rong Zhang; Thomas Wolker; Daniel J. S. Sandbeck; Macarena Munoz; Karl J.J. Mayrhofer; Serhiy Cherevko; Bastian J. M. Etzold
Modifying Pt catalysts using hydrophobic ionic liquids (ILs) has been demonstrated to be a facile approach for boosting the performance of Pt catalysts for the oxygen reduction reaction (ORR). This work aims to deepen the understanding and initiate a rational molecular tuning of ILs for improved activity and stability. To this end, Pt/C catalysts were modified using a variety of 1-methyl-3-alkylimidazolium bis(trifluoromethanesulfonyl)imide ([CnC1im][NTf2], n = 2–10) ILs with varying alkyl chain lengths in imidazolium cations, and the electrocatalytic properties (e.g., electrochemically active surface area, catalytic activity, and stability) of the resultant catalysts were systematically investigated. We found that ILs with long cationic chains (C6, C10) efficiently suppressed the formation of nonreactive oxygenated species on Pt; however, at the same time they blocked active Pt sites and led to a lower electrochemically active surface area. It is also disclosed that the catalytic activity strongly correlates with the alkyl chain length of cations, and a distinct dependence of intrinsic activity on the alkyl chain length was identified, with the maximum activity obtained on Pt/C-[C4C1im][NTf2]. The optimum arises from the counterbalance between more efficient suppression of oxygenated species formation on Pt surfaces and more severe passivation of Pt surfaces with elongation of the alkyl chain length in imidazolium cations. Moreover, the presence of an IL can also improve the electrochemical stability of Pt catalysts by suppressing the Pt dissolution, as revealed by combined identical-location transmission electron microscopy (TEM) and in situ inductively coupled plasma mass spectrometry (ICP-MS) analyses.