Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maciej M. Mrugala is active.

Publication


Featured researches published by Maciej M. Mrugala.


Journal of The National Comprehensive Cancer Network | 2011

Central Nervous System Cancers

Steven Brem; Philip J. Bierman; Henry Brem; Nicholas Butowski; Marc C. Chamberlain; Ennio A. Chiocca; Lisa M. DeAngelis; Robert A. Fenstermaker; Allan H. Friedman; Mark R. Gilbert; Deneen Hesser; Larry Junck; Gerald P. Linette; Jay S. Loeffler; Moshe H. Maor; Madison Michael; Paul L. Moots; Tara Morrison; Maciej M. Mrugala; Louis B. Nabors; Herbert B. Newton; Jana Portnow; Jeffrey Raizer; Lawrence Recht; Dennis C. Shrieve; Allen K. Sills; Frank D. Vrionis; Patrick Y. Wen

Primary and metastatic tumors of the central nervous system are a heterogeneous group of neoplasms with varied outcomes and management strategies. Recently, improved survival observed in 2 randomized clinical trials established combined chemotherapy and radiation as the new standard for treating patients with pure or mixed anaplastic oligodendroglioma harboring the 1p/19q codeletion. For metastatic disease, increasing evidence supports the efficacy of stereotactic radiosurgery in treating patients with multiple metastatic lesions but low overall tumor volume. These guidelines provide recommendations on the diagnosis and management of this group of diseases based on clinical evidence and panel consensus. This version includes expert advice on the management of low-grade infiltrative astrocytomas, oligodendrogliomas, anaplastic gliomas, glioblastomas, medulloblastomas, supratentorial primitive neuroectodermal tumors, and brain metastases. The full online version, available at NCCN. org, contains recommendations on additional subtypes.


Physics in Medicine and Biology | 2010

Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach

Russell Rockne; Jason K. Rockhill; Maciej M. Mrugala; Alexander M. Spence; Ira J. Kalet; K Hendrickson; Albert Lai; Timothy F. Cloughesy; E C Alvord; Kristin R. Swanson

Glioblastoma multiforme (GBM) is the most malignant form of primary brain tumors known as gliomas. They proliferate and invade extensively and yield short life expectancies despite aggressive treatment. Response to treatment is usually measured in terms of the survival of groups of patients treated similarly, but this statistical approach misses the subgroups that may have responded to or may have been injured by treatment. Such statistics offer scant reassurance to individual patients who have suffered through these treatments. Furthermore, current imaging-based treatment response metrics in individual patients ignore patient-specific differences in tumor growth kinetics, which have been shown to vary widely across patients even within the same histological diagnosis and, unfortunately, these metrics have shown only minimal success in predicting patient outcome. We consider nine newly diagnosed GBM patients receiving diagnostic biopsy followed by standard-of-care external beam radiation therapy (XRT). We present and apply a patient-specific, biologically based mathematical model for glioma growth that quantifies response to XRT in individual patients in vivo. The mathematical model uses net rates of proliferation and migration of malignant tumor cells to characterize the tumors growth and invasion along with the linear-quadratic model for the response to radiation therapy. Using only routinely available pre-treatment MRIs to inform the patient-specific bio-mathematical model simulations, we find that radiation response in these patients, quantified by both clinical and model-generated measures, could have been predicted prior to treatment with high accuracy. Specifically, we find that the net proliferation rate is correlated with the radiation response parameter (r = 0.89, p = 0.0007), resulting in a predictive relationship that is tested with a leave-one-out cross-validation technique. This relationship predicts the tumor size post-therapy to within inter-observer tumor volume uncertainty. The results of this study suggest that a mathematical model can create a virtual in silico tumor with the same growth kinetics as a particular patient and can not only predict treatment response in individual patients in vivo but also provide a basis for evaluation of response in each patient to any given therapy.


Cancer Research | 2009

Prognostic Significance of Growth Kinetics in Newly Diagnosed Glioblastomas Revealed by Combining Serial Imaging with a Novel Biomathematical Model

Christina Wang; Jason K. Rockhill; Maciej M. Mrugala; Danielle L. Peacock; Albert Lai; Katy Jusenius; Joanna M. Wardlaw; Timothy F. Cloughesy; Alexander M. Spence; Russ Rockne; Ellsworth C. Alvord; Kristin R. Swanson

Glioblastomas are the most aggressive primary brain tumors, characterized by their rapid proliferation and diffuse infiltration of the brain tissue. Survival patterns in patients with glioblastoma have been associated with a number of clinicopathologic factors including age and neurologic status, yet a significant quantitative link to in vivo growth kinetics of each glioma has remained elusive. Exploiting a recently developed tool for quantifying glioma net proliferation and invasion rates in individual patients using routinely available magnetic resonance images (MRI), we propose to link these patient-specific kinetic rates of biological aggressiveness to prognostic significance. Using our biologically based mathematical model for glioma growth and invasion, examination of serial pretreatment MRIs of 32 glioblastoma patients allowed quantification of these rates for each patients tumor. Survival analyses revealed that even when controlling for standard clinical parameters (e.g., age and Karnofsky performance status), these model-defined parameters quantifying biological aggressiveness (net proliferation and invasion rates) were significantly associated with prognosis. One hypothesis generated was that the ratio of the actual survival time after whatever therapies were used to the duration of survival predicted (by the model) without any therapy would provide a therapeutic response index (TRI) of the overall effectiveness of the therapies. The TRI may provide important information, not otherwise available, about the effectiveness of the treatments in individual patients. To our knowledge, this is the first report indicating that dynamic insight from routinely obtained pretreatment imaging may be quantitatively useful in characterizing the survival of individual patients with glioblastoma. Such a hybrid tool bridging mathematical modeling and clinical imaging may allow for stratifying patients for clinical studies relative to their pretreatment biological aggressiveness.


Nature Reviews Clinical Oncology | 2008

Mechanisms of disease: temozolomide and glioblastoma--look to the future.

Maciej M. Mrugala; Marc C. Chamberlain

Glioblastoma is both the most common and most aggressive primary brain tumor. Until recently, the standard of care involved maximal safe surgical resection followed by radiation therapy with or without nitrosourea-based chemotherapy. In 2005, the results of a large clinical trial examining the role of adjuvant chemotherapy in management of newly diagnosed glioblastoma were published. This study created a new standard of adjuvant treatment, using concurrent and sequential temozolomide in the initial therapy of glioblastoma. A companion tumor biology study identified the prognostic role of O6-methylguanine-DNA methyltransferase (MGMT) status in patients with newly diagnosed glioblastoma. Several preliminary studies have been initiated to address the issue of resistance and suppression of MGMT activity, and have used alternative temozolomide dosing schedules and O6-guanine mimetic agents as substrates for MGMT. In addition, recent studies have attempted to define mechanisms responsible for the apparent synergy between temozolomide and radiotherapy. Lastly, an increased understanding of the molecular biology of glioblastoma has provided new leads for the adjuvant treatment of this disease. This Review summarizes new developments in treatment of glioblastoma and speculates on possible future treatment strategies for managing this aggressive cancer.


Neuro-oncology | 2009

High-dose methotrexate for elderly patients with primary CNS lymphoma

Jay Jiguang Zhu; Elizabeth R. Gerstner; David Engler; Maciej M. Mrugala; Whitney Nugent; Kristin Nierenberg; Fred H. Hochberg; Rebecca A. Betensky; Tracy T. Batchelor

The introduction of methotrexate (MTX)-based chemotherapy has improved median survival for patients with primary CNS lymphoma (PCNSL). Older age is a negative prognostic marker in patients with PCNSL and may increase the likelihood of MTX toxicity. We studied the response and adverse effects of intravenous high-dose MTX in patients who were 70 or more years of age at the time of diagnosis. We identified 31 patients at our institution diagnosed with PCNSL at age > or =70 years (median, 74 years) who were treated with high-dose MTX (3.5-8 g/m(2)) as initial therapy from 1992 through 2006. The best response to MTX was determined by contrast-enhanced MRI. Toxicity was analyzed by chart review. These 31 patients received a total of 303 cycles of MTX (median, eight cycles per patient). Overall, 87.9% of the cycles required dose reduction because of impaired creatinine clearance. In 30 evaluable patients, the overall radiographic response rate was 96.7%, with 18 complete responses (60%) and 11 partial responses (36.7%). Progression-free survival and overall survival were 7.1 months and 37 months, respectively. Grade I-IV toxicities were observed in 27 of 31 patients and included gastrointestinal disturbances in 58% (3.2% grade III), hematological complications in 80.6% (6.5% grade III), and renal toxicity in 29% (0% grade III/IV). High-dose MTX is associated with a high proportion of radiographic responses and a low proportion of grade III/IV toxicity in patients 70 or more years of age. High-dose MTX should be considered as a feasible treatment option in elderly patients with PCNSL.


Current Opinion in Neurology | 2005

Peripheral and cranial nerve sheath tumors.

Maciej M. Mrugala; Tracy T. Batchelor; Scott R. Plotkin

Purpose of reviewThe intention of the authors is to provide the reader with an overview of the recent advances in the diagnosis and treatment of nerve sheath tumors. Vestibular schwannomas, neurogenetic syndromes such as schwannomatosis and multiple isolated neurofibromas, and malignant peripheral nerve sheath tumors are covered in this review. Recent findingsOver the last year, literature focusing on different management strategies for patients with vestibular schwannomas dominated the field. Surgical options for this group of patients are changing. Stereotactic radiation is also employed more frequently with promising results. New insights into the biology of peripheral nerve tumor development and growth, including expression of vascular endothelial growth factor by vestibular schwannomas and the role of Notch signaling in malignant transformation of benign neurofibromas have been described. Diagnostic criteria for schwannomatosis, a recently described condition, are being developed. Several cases of multiple isolated neurofibromas and spinal neurofibromas were reported. SummaryPeripheral nerve tumors are classified according to the specific features of cellular differentiation. The most common types include schwannoma and neurofibroma. These tumors can occur sporadically or as manifestations of genetic syndromes such as neurofibromatosis types 1 and 2 or schwannomatosis. The majority of peripheral nerve tumors are benign but malignant transformation does occur. Metastatic tumors can also affect peripheral nerves. The diagnostic modality of choice is magnetic resonance imaging. Positron emission tomography is a useful technique in the presurgical differentiation between benign and malignant peripheral nerve sheath tumors. Treatment is directed towards symptomatic control. Surgery, radiation and, in rare instances, chemotherapy are the major treatment modalities employed.


Science Translational Medicine | 2012

Extended Survival of Glioblastoma Patients After Chemoprotective HSC Gene Therapy

Jennifer E. Adair; Brian C. Beard; Grant D. Trobridge; Tobias Neff; Jason K. Rockhill; Daniel L. Silbergeld; Maciej M. Mrugala; Hans Peter Kiem

Gene therapy using P140K-modified hematopoietic progenitor cells is chemoprotective, enabling glioblastoma patients to withstand myelotoxic doses of chemotherapy. Arming Blood Stem Cells to Fight Cancer The toxic effects of chemotherapy (chemotoxicity) on blood and bone marrow cells of cancer patients can be a significant barrier to treating tumors. Delivery of a gene that can protect bone marrow stem and progenitor cells from chemotoxicity could overcome this barrier. In a new study by Adair et al., patients with chemotherapy-resistant brain tumors with very poor chances of survival were given a transplant with their own bone marrow hematopoietic stem cells after the cells had been modified with a gene that protects these cells from chemotherapy. After the bone marrow transplant, patients were then given dose-intensified chemotherapy. Adair et al. report that the patients were able to tolerate these chemotherapy doses better after transplant of the gene-modified bone marrow stem cells than did patients in previous studies who had received the same type of chemotherapy but without the gene-modified bone marrow stem cell transplant. The authors found that chemotherapy increased the number of gene-modified blood and bone marrow cells in these patients. These patients survived longer than predicted without any negative side effects from the transplanted cells or the treatment given. This strategy could be used for treating other types of cancer, or diseases treated with the same type of chemotherapy, to increase the efficacy of the drug regimen. This strategy could also be further developed as a clinical application in other diseases where defective bone marrow stem cells can be corrected by gene therapy but need to be increased to higher levels to produce a therapeutic benefit. Chemotherapy with alkylating agents for treating malignant disease results in myelosuppression that can significantly limit dose escalation and potential clinical efficacy. Gene therapy using mutant methylguanine methyltransferase (P140K) gene–modified hematopoietic stem and progenitor cells may circumvent this problem by abrogating the toxic effects of chemotherapy on hematopoietic cells. However, this approach has not been evaluated clinically. Here, we show efficient polyclonal engraftment of autologous P140K-modified hematopoietic stem and progenitor cells in three patients with glioblastoma. Increases in P140K-modified cells after transplant indicate selection of gene-modified hematopoietic repopulating cells. Longitudinal retroviral integration site (RIS) analysis identified more than 12,000 unique RISs in the three glioblastoma patients, with multiple clones present in the peripheral blood of each patient throughout multiple chemotherapy cycles. To assess safety, we monitored RIS distribution over the course of chemotherapy treatments. Two patients exhibited emergence of prominent clones harboring RISs associated with the intronic coding region of PRDM16 (PR domain–containing 16) or the 3′ untranslated region of HMGA2 (high-mobility group A2) genes with no adverse clinical outcomes. All three patients surpassed the median survival for glioblastoma patients with poor prognosis, with one patient alive and progression-free more than 2 years after diagnosis. Thus, transplanted P140K-expressing hematopoietic stem and progenitor cells are chemoprotective, potentially maximizing the drug dose that can be administered.


PLOS ONE | 2013

Toward Patient-Specific, Biologically Optimized Radiation Therapy Plans for the Treatment of Glioblastoma

David Corwin; Clay Holdsworth; Russell Rockne; Andrew D. Trister; Maciej M. Mrugala; Jason K. Rockhill; Robert D. Stewart; Mark H. Phillips; Kristin R. Swanson

Purpose To demonstrate a method of generating patient-specific, biologically-guided radiotherapy dose plans and compare them to the standard-of-care protocol. Methods and Materials We integrated a patient-specific biomathematical model of glioma proliferation, invasion and radiotherapy with a multiobjective evolutionary algorithm for intensity-modulated radiation therapy optimization to construct individualized, biologically-guided plans for 11 glioblastoma patients. Patient-individualized, spherically-symmetric simulations of the standard-of-care and optimized plans were compared in terms of several biological metrics. Results The integrated model generated spatially non-uniform doses that, when compared to the standard-of-care protocol, resulted in a 67% to 93% decrease in equivalent uniform dose to normal tissue, while the therapeutic ratio, the ratio of tumor equivalent uniform dose to that of normal tissue, increased between 50% to 265%. Applying a novel metric of treatment response (Days Gained) to the patient-individualized simulation results predicted that the optimized plans would have a significant impact on delaying tumor progression, with increases from 21% to 105% for 9 of 11 patients. Conclusions Patient-individualized simulations using the combination of a biomathematical model with an optimization algorithm for radiation therapy generated biologically-guided doses that decreased normal tissue EUD and increased therapeutic ratio with the potential to improve survival outcomes for treatment of glioblastoma.


Journal of Clinical Investigation | 2014

Gene therapy enhances chemotherapy tolerance and efficacy in glioblastoma patients

Jennifer E. Adair; Sandra K. Johnston; Maciej M. Mrugala; Brian C. Beard; Laura Guyman; Anne Baldock; Carly Bridge; Andrea Hawkins-Daarud; Jennifer L. Gori; Donald E. Born; Luis F. Gonzalez-Cuyar; Daniel L. Silbergeld; Russell Rockne; Barry E. Storer; Jason K. Rockhill; Kristin R. Swanson; Hans Peter Kiem

BACKGROUND Temozolomide (TMZ) is one of the most potent chemotherapy agents for the treatment of glioblastoma. Unfortunately, almost half of glioblastoma tumors are TMZ resistant due to overexpression of methylguanine methyltransferase (MGMT(hi)). Coadministration of O6-benzylguanine (O6BG) can restore TMZ sensitivity, but causes off-target myelosuppression. Here, we conducted a prospective clinical trial to test whether gene therapy to confer O6BG resistance in hematopoietic stem cells (HSCs) improves chemotherapy tolerance and outcome. METHODS We enrolled 7 newly diagnosed glioblastoma patients with MGMT(hi) tumors. Patients received autologous gene-modified HSCs following single-agent carmustine administration. After hematopoietic recovery, patients underwent O6BG/TMZ chemotherapy in 28-day cycles. Serial blood samples and tumor images were collected throughout the study. Chemotherapy tolerance was determined by the observed myelosuppression and recovery following each cycle. Patient-specific biomathematical modeling of tumor growth was performed. Progression-free survival (PFS) and overall survival (OS) were also evaluated. RESULTS Gene therapy permitted a significant increase in the mean number of tolerated O6BG/TMZ cycles (4.4 cycles per patient, P < 0.05) compared with historical controls without gene therapy (n = 7 patients, 1.7 cycles per patient). One patient tolerated an unprecedented 9 cycles and demonstrated long-term PFS without additional therapy. Overall, we observed a median PFS of 9 (range 3.5-57+) months and OS of 20 (range 13-57+) months. Furthermore, biomathematical modeling revealed markedly delayed tumor growth at lower cumulative TMZ doses in study patients compared with patients that received standard TMZ regimens without O6BG. CONCLUSION These data support further development of chemoprotective gene therapy in combination with O6BG and TMZ for the treatment of glioblastoma and potentially other tumors with overexpression of MGMT. TRIAL REGISTRATION Clinicaltrials.gov NCT00669669. FUNDING R01CA114218, R01AI080326, R01HL098489, P30DK056465, K01DK076973, R01HL074162, R01CA164371, R01NS060752, U54CA143970.


Journal of The National Comprehensive Cancer Network | 2017

Central Nervous System Cancers, Version 2.2014: Featured Updates to the NCCN Guidelines

Louis B. Nabors; Jana Portnow; Mario Ammirati; Henry Brem; Paul D. Brown; Nicholas Butowski; Marc C. Chamberlain; Lisa M. DeAngelis; Robert A. Fenstermaker; Allan H. Friedman; Mark R. Gilbert; Jona A. Hattangadi-Gluth; Deneen Hesser; Matthias Holdhoff; Larry Junck; Ronald Lawson; Jay S. Loeffler; Paul L. Moots; Maciej M. Mrugala; Herbert B. Newton; Jeffrey Raizer; Lawrence Recht; Nicole Shonka; Dennis C. Shrieve; Allen K. Sills; Lode J. Swinnen; David D. Tran; Nam D. Tran; Frank D. Vrionis; Patrick Y. Wen

For many years, the diagnosis and classification of gliomas have been based on histology. Although studies including large populations of patients demonstrated the prognostic value of histologic phenotype, variability in outcomes within histologic groups limited the utility of this system. Nonetheless, histology was the only proven and widely accessible tool available at the time, thus it was used for clinical trial entry criteria, and therefore determined the recommended treatment options. Research to identify molecular changes that underlie glioma progression has led to the discovery of molecular features that have greater diagnostic and prognostic value than histology. Analyses of these molecular markers across populations from randomized clinical trials have shown that some of these markers are also predictive of response to specific types of treatment, which has prompted significant changes to the recommended treatment options for grade III (anaplastic) gliomas.

Collaboration


Dive into the Maciej M. Mrugala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David D. Tran

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer E. Adair

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Baldock

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge