Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maciej Sassek is active.

Publication


Featured researches published by Maciej Sassek.


Diabetologia | 2013

Glucagon increases circulating fibroblast growth factor 21 independently of endogenous insulin levels: a novel mechanism of glucagon-stimulated lipolysis?

Ayman M. Arafat; Przemyslaw Kaczmarek; Marek Skrzypski; Ewa Pruszyńska-Oszmałek; Paweł A. Kołodziejski; Dawid Szczepankiewicz; Maciej Sassek; T. Wojciechowicz; Bertram Wiedenmann; Andreas F.H. Pfeiffer; Krzysztof W. Nowak; Mathias Z. Strowski

Aims/hypothesisGlucagon reduces body weight by modifying food intake, glucose/lipid metabolism and energy expenditure. All these physiological processes are also controlled by fibroblast growth factor 21 (FGF-21), a circulating hepatokine that improves the metabolic profile in obesity and type 2 diabetes. Animal experiments have suggested a possible interaction between glucagon and FGF-21 however, the metabolic consequences of this crosstalk are not understood.MethodsThe effects of exogenous glucagon on plasma FGF-21 levels and lipolysis were evaluated in healthy volunteers and humans with type 1 diabetes, as well as in rodents with streptozotocin (STZ)-induced insulinopenic diabetes. In vitro, the role of glucagon on FGF-21 secretion and lipolysis was studied using isolated primary rat hepatocytes and adipocytes. Fgf-21 expression in differentiated rat pre-adipocytes was suppressed by small interfering RNA and released FGF-21 was immunoneutralised by polyclonal antibodies.ResultsGlucagon induced lipolysis in healthy human volunteers, patients with type 1 diabetes, mice and rats with STZ-induced insulinopenic diabetes, and in adipocytes isolated from diabetic and non-diabetic animals. In addition, glucagon increased circulating FGF-21 in healthy humans and rodents, as well as in patients with type 1 diabetes, and insulinopenic rodents. Glucagon stimulated FGF-21 secretion from isolated primary hepatocytes and adipocytes derived from animals with insulinopenic diabetes. Furthermore, FGF-21 stimulated lipolysis in primary adipocytes isolated from non-diabetic and diabetic rats. Reduction of Fgf-21 expression (by approximately 66%) or immunoneutralisation of released FGF-21 markedly attenuated glucagon-stimulated lipolysis in adipocytes.Conclusions/interpretationThese results indicate that glucagon increases circulating FGF-21 independently of endogenous insulin levels. FGF-21 participates in glucagon-induced stimulation of lipolysis.


FEBS Letters | 2012

Effects of orexin A on proliferation, survival, apoptosis and differentiation of 3T3‐L1 preadipocytes into mature adipocytes

Marek Skrzypski; P. Kaczmarek; T.T. Le; T. Wojciechowicz; E. Pruszyńska-Oszmalek; Dawid Szczepankiewicz; Maciej Sassek; Ayman M. Arafat; Bertram Wiedenmann; Krzysztof W. Nowak; Mathias Z. Strowski

Metabolic activities of orexin A (OXA) in mature adipocytes are mediated via PI3K/PKB and PPARγ. However, the effects of OXA on preadipocytes are largely unknown. We report here that OXA stimulates the proliferation and viability of 3T3‐L1 preadipocytes and protects them from apoptosis via ERK1/2, but not through PKB. OXA reduces proapoptotic activity of caspase‐3 via ERK1/2. Inhibition of ERK1/2 prevents the differentiation of preadipocytes into adipocytes. Unlike insulin, neither short‐term nor prolonged exposure of 3T3‐L1 preadipocytes to OXA induces preadipocyte differentiation to adipocytes, despite increased ERK1/2 phosphorylation. Unlike insulin, OXA fails to activate PKB, which explains its inability to induce the differentiation of preadipocytes.


Cellular Signalling | 2014

Capsaicin induces cytotoxicity in pancreatic neuroendocrine tumor cells via mitochondrial action.

Marek Skrzypski; Maciej Sassek; Suzette Abdelmessih; Stefan Mergler; Carsten Grötzinger; D. Metzke; T. Wojciechowicz; K.W. Nowak; Mathias Z. Strowski

Capsaicin (CAP), the pungent ingredient of chili peppers, inhibits growth of various solid cancers via TRPV1 as well as TRPV1-independent mechanisms. Recently, we showed that TRPV1 regulates intracellular calcium level and chromogranin A secretion in pancreatic neuroendocrine tumor (NET) cells. In the present study, we characterize the role of the TRPV1 agonist - CAP - in controlling proliferation and apoptosis of pancreatic BON and QGP-1 NET cells. We demonstrate that CAP reduces viability and proliferation, and stimulates apoptotic death of NET cells. CAP causes mitochondrial membrane potential loss, inhibits ATP synthesis and reduces mitochondrial Bcl-2 protein production. In addition, CAP increases cytochrome c and cleaved caspase 3 levels in cytoplasm. CAP reduces reactive oxygen species (ROS) generation. The antioxidant N-acetyl-l-cysteine (NAC) acts synergistically with CAP to reduce ROS generation, without affecting CAP-induced toxicity. TRPV1 protein reduction by 75% reduction fails to attenuate CAP-induced cytotoxicity. In summary, these results suggest that CAP induces cytotoxicity by disturbing mitochondrial potential, and inhibits ATP synthesis in NET cells. Stimulation of ROS generation by CAP appears to be a secondary effect, not related to CAP-induced cytotoxicity. These results justify further evaluation of CAP in modulating pancreatic NETs in vivo.


Cellular Signalling | 2012

Thermo-sensitive transient receptor potential vanilloid channel-1 regulates intracellular calcium and triggers chromogranin A secretion in pancreatic neuroendocrine BON-1 tumor cells

Stefan Mergler; Marek Skrzypski; Maciej Sassek; Piotr Pietrzak; Christina Pucci; Bertram Wiedenmann; Mathias Z. Strowski

Transient receptor potential channels (TRPs) regulate tumor growth via calcium-dependent mechanisms. The (thermosensitive) capsaicin receptor TRPV1 is overexpressed in numerous highly aggressive cancers. TRPV1 has potent antiproliferative activity and is therefore potentially applicable in targeted therapy of malignancies. Recently, we characterized TRPM8 functions in pancreatic neuroendocrine tumors (NETs), however, the role of TRPV1 is unknown. Here, we studied the expression and the role of TRPV1 in regulating intracellular Ca(2+) and chromogranin A (CgA) secretion in pancreatic NET BON-1 cell line and in primary NET cells (prNET). TRPV1 expression was detected by RT-PCR, Western blot and immunofluorescence. Intracellular free Ca(2+) ([Ca(2+)](i)) was measured by fura-2; TRPV1 channel currents by the planar patch-clamp technique. Nonselective cation currents were analyzed by a color-coded plot method and CgA secretion by ELISA. Pancreatic BON-1 cells and NETs express TRPV1. Pharmacological blockade of TRPs by La(3+) (100 μM) or by ruthenium-red (RuR) or by capsazepine (CPZ) (both at 10 μM) suppressed the capsaicin (CAP)- or heat-stimulated increase of [Ca(2+)](i) in NET cells. CAP (20 μM) also increased nonselective cation channel currents in BON-1 cells. Furthermore, CAP (10 μM) stimulated CgA secretion, which was inhibited by CPZ or by RuR (both 10 μM). La(3+) potently reduced both stimulated and the basal CgA secretion. Our study shows for the first time that TRPV1 is expressed in pancreatic NETs. Activation of TRPV1 translates into changes of intracellular Ca(2+), a known mechanism triggering the secretion of CgA. The clinical relevance of TRPV1 activation in NETs requires further investigations.


Neuropeptides | 2016

Effects of high-fat diet-induced obesity and diabetes on Kiss1 and GPR54 expression in the hypothalamic–pituitary–gonadal (HPG) axis and peripheral organs (fat, pancreas and liver) in male rats

M. Dudek; Paweł A. Kołodziejski; Ewa Pruszyńska-Oszmałek; Maciej Sassek; K. Ziarniak; K.W. Nowak; Joanna H. Sliwowska

Recent data indicates that kisspeptin, encoded by the KISS1 gene, could play a role in transducing metabolic information into the hypothalamic-pituitary-gonadal (HPG) axis, the mechanism that controls reproductive functions. Numerous studies have shown that in a state of negative energy balance, the hypothalamic kisspeptin system is impaired. However, data concerning positive energy balance (e.g. diabetes and obesity) and the role of kisspeptin in the peripheral tissues is scant. We hypothesized that: 1) in diet-induced obese (DIO) male rats and/or rats with diabetes type 1 (DM1) and type 2 (DM2), altered reproductive functions are related to an imbalance in Kiss1 and GPR54 mRNA in the HPG axis; and 2) in DIO and/or DM1 and/or DM2 rats, Kiss1 and GPR 54 expression are altered in the peripheral tissues involved in metabolic functions (fat, pancreas and liver). Animals were fed a high-fat or control diets and STZ (streptozotocin - toxin, which destroys the pancreas) was injected in high or low doses to induce diabetes type 1 (DM1) or diabetes type 2 (DM2), respectively. RT-PCR and Western blot techniques were used to assess the expression of Kiss1 and GRP54 in tissues. At the level of mRNA, we found that diabetic but not obese rats have alterations in Kiss1 and/or GPR54 mRNA levels in the HPG axis as well as in peripheral tissues involved in metabolic functions (fat, pancreas and liver). The most severe changes were seen in DM1 rats. However, in the case of protein levels in the peripheral tissues (fat, pancreas and liver), changes in Kiss1/GPR54 expression were noticed in DIO, DM1 and DM2 animals and were tissue-specific. Our data support the hypothesis that alterations in Kiss1/GPR54 balance may account for both reproductive and metabolic abnormalities reported in obese and diabetic rats.


Regulatory Peptides | 2012

Neuropeptide B and W regulate leptin and resistin secretion, and stimulate lipolysis in isolated rat adipocytes

Marek Skrzypski; Ewa Pruszyńska-Oszmałek; Marcin Rucinski; Dawid Szczepankiewicz; Maciej Sassek; Tatiana Wojciechowicz; Przemyslaw Kaczmarek; Paweł A. Kołodziejski; Mathias Z. Strowski; Ludwik K. Malendowicz; Krzysztof W. Nowak

Neuropeptide B (NPB) and W (NPW) regulate food intake and energy homeostasis in humans via two G-protein-coupled receptor subtypes, termed as GPR7 and GPR8. Rodents express GPR7 only. In animals, NPW decreases insulin and leptin levels, whereas the deletion of either NPB or GPR7 leads to obesity and hyperphagia. Metabolic and endocrine in vitro activities of NPW/NPB in adipocytes are unknown. We therefore characterize the effects of NPB and NPW on the secretion and expression of leptin and resistin, and on lipolysis, using rat adipocytes. Isolated rat adipocytes express GPR7 mRNA. NPB and NPW are expressed in macrophages and preadipocytes but are absent in mature adipocytes. Both, NPB and NPW reduce the secretion and expression of leptin from isolated rat adipocytes. NPB stimulates the secretion and expression of resistin, whereas both, NPB and NPW increase lipolysis. Our study demonstrates for the first time that NPB and NPW regulate the expression and secretion of leptin and resistin, and increase lipolysis in isolated rat adipocytes. These effects are presumably mediated via GPR7. The increase of resistin secretion, stimulation of lipolysis and the decrease of leptin secretion may represent mechanisms, through which NPB and NPW can affect glucose and lipid homeostasis, and food intake in rodents.


Molecular Medicine Reports | 2010

Evaluation of insulin binding and signaling activity of newly synthesized chromium(III) complexes in vitro.

Paweł Maćkowiak; Zbigniew Krejpcio; Maciej Sassek; Przemyslaw Kaczmarek; Iwona Hertig; Joanna Chmielewska; Tatiana Wojciechowicz; Dawid Szczepankiewicz; Daria Wieczorek; Henryk Szymusiak; Krzysztof W. Nowak

In the present study, the influence of chromium(III) complexes (acetate, chloride, glycinate, histidinate, lactate and propionate) on insulin binding and signal transduction [phosphorylation of tyrosine and serine in the insulin receptor substrate (IRS)-1] was investigated in vitro using three experimental models: isolated rat liver membranes and cultured mouse C2C12 myoblasts or 3T3-L1 preadipocytes. The examined complexes did not elevate the binding of insulin to the liver membranes. Moreover, chromium histidinate, lactate, acetate and propionate complexes diminished the specific binding of insulin. Simultaneously, chromium chloride, which did not significantly elevate insulin binding, increased the number of membrane accessible particles of the insulin receptors. However, it was accompanied by slightly diminished affinity of the receptor to the hormone. Chromium acetate and propionate significantly diminished the binding capacity of the low-affinity insulin receptor class. Investigations with the myoblast cell line C2C12 and preadipocyte cell line 3T3-L1 did not allow differentiation of the influence of the examined complexes on insulin binding. Immunodetection of phosphorylated forms of IRS-1 showed that the chromium compounds modulated the transduction of the insulin signal. Chromium glycinate, acetate and propionate decreased the amount of IRS-1 phosphorylated at serine. Since it is generally thought that phosphorylation of serine in IRS-1 may moderate insulin action, the above mentioned chromium complexes may, in this way, enhance insulin effects inside target cells. Phosphorylation of tyrosine in IRS-1, which acts as a stimulatory signal for further steps of insulin action, was elevated after the incubation of 3T3-L1 cells with insulin. Chromium supplementation did not additionally intensify this process. However, in the absence of insulin, chromium glycinate and acetate slightly elevated the level of IRS-1 phosphorylated at tyrosine. This fact may be important in vivo at low levels of insulin in blood. The results indicate that the action of chromium(III) complexes involves a direct effect on the number of receptors accessible to insulin, their affinity to the hormone and the modulation of the signal multiplying proteins by their phosphorylation.


Diabetologia | 2014

Glucagon regulates orexin A secretion in humans and rodents

Ayman M. Arafat; Przemyslaw Kaczmarek; Marek Skrzypski; Ewa Pruszyńska-Oszmałek; Paweł A. Kołodziejski; Aikaterini Adamidou; Stephan Ruhla; Dawid Szczepankiewicz; Maciej Sassek; Maria Billert; Bertram Wiedenmann; Andreas F.H. Pfeiffer; Krzysztof W. Nowak; Mathias Z. Strowski

Aims/hypothesisOrexin A (OXA) modulates food intake, energy expenditure, and lipid and glucose metabolism. OXA regulates the secretion of insulin and glucagon, while glucose regulates OXA release. Here, we evaluate the role of glucagon in regulating OXA release both in vivo and in vitro.MethodsIn a double-blind crossover study, healthy volunteers and type 1 diabetic patients received either intramuscular glucagon or placebo. Patients newly diagnosed with type 2 diabetes underwent hyperinsulinaemic–euglycaemic clamp experiments, and insulin–hypoglycaemia tests were performed on healthy volunteers. The primary endpoint was a change in OXA levels after intramuscular glucagon or placebo administration in healthy participants and patients with type 1 diabetes. Secondary endpoints included changes in OXA in healthy participants during insulin tolerance tests and in patients with type 2 diabetes under hyperinsulinaemic–euglycaemic conditions. Participants and staff conducting examinations and taking measurements were blinded to group assignment. OXA secretion in response to glucagon treatment was assessed in healthy and obese mice, the streptozotocin-induced mouse model of type 1 diabetes, and isolated rat pancreatic islets.ResultsPlasma OXA levels declined in lean volunteers and in type 1 diabetic patients injected with glucagon. OXA levels increased during hyperinsulinaemic hypoglycaemia testing in healthy volunteers and during hyperinsulinaemic euglycaemic conditions in type 2 diabetic patients. Plasma OXA concentrations in healthy lean and obese mice and in a mouse model of type 1 diabetes were lower after glucagon treatment, compared with vehicle control. Glucagon decreased OXA secretion from isolated rat pancreatic islets at both low and high glucose levels. OXA secretion declined in pancreatic islets exposed to diazoxide at high and low glucose levels, and after exposure to an anti-insulin antibody. Glucagon further reduced OXA secretion in islets pretreated with diazoxide or an anti-insulin antibody.Conclusions/interpretationGlucagon inhibits OXA secretion in humans and animals, irrespective of changes in glucose or insulin levels. Through modifying OXA secretion, glucagon may influence energy expenditure, body weight, food intake and glucose metabolism.


FEBS Letters | 2013

Activation of TRPV4 channel in pancreatic INS-1E beta cells enhances glucose-stimulated insulin secretion via calcium-dependent mechanisms.

Marek Skrzypski; M. Kakkassery; Stefan Mergler; Carsten Grötzinger; Noushafarin Khajavi; Maciej Sassek; Dawid Szczepankiewicz; Bertram Wiedenmann; Krzysztof W. Nowak; Mathias Z. Strowski

Transient receptor potential channel vanilloid type 4 (TRPV4) is a Ca2+‐ and Mg2+‐permeable cation channel that influences oxidative metabolism and insulin sensitivity. The role of TRPV4 in pancreatic beta cells is largely unknown. Here, we characterize the role of TRPV4 in controlling intracellular Ca2+ and insulin secretion in INS‐1E beta cells. Osmotic, thermal or pharmacological activation of TRPV4 caused a rapid rise of intracellular Ca2+ and enhanced glucose‐stimulated insulin secretion. In the presence of the TRPV channel blocker ruthenium red (RuR) or after suppression of TRPV4 protein production, TRPV4 activators failed to increase [Ca2+]i and insulin secretion in INS‐1E cells.


Pancreas | 2009

Does somatostatin confer insulinostatic effects of neuromedin u in the rat pancreas

Przemyslaw Kaczmarek; Ludwik K. Malendowicz; Marzena Fabis; Agnieszka Ziolkowska; Ewa Pruszyńska-Oszmałek; Maciej Sassek; Tatiana Wojciechowicz; Dawid Szczepankiewicz; Karolina Andralojc; Tomasz Szkudelski; Mathias Z. Strowski; Krzysztof W. Nowak

Objectives: Neuromedin U (NmU) is a neuropeptide with anorexigenic activity. Two receptor subtypes (NmUR1 and NmUR2) confer the effects of NmU on target cells. We have recently demonstrated that NmU reduces insulin secretion from isolated pancreatic islets. Aim of our current study is to investigate the role of somatostatin at mediating the effects of NmU on insulin secretion. Methods: Expression of NmU in the pancreas was detected by immunohistochemistry. Insulin and somatostatin secretion from in situ perfused rat pancreas and isolated pancreatic islets was measured by radioimmunoassay. The paracrine effects of somatostatin within pancreatic islets were blocked by cyclosomatostatin, a somatostatin receptor antagonist. Results: Receptor subtype NmUR1, but not NmUR2, was expressed in the endocrine pancreas, predominantly in the periphery. Neuromedin U reduced insulin secretion from in situ perfused rat pancreas and stimulated somatostatin secretion from isolated pancreatic islets. Neuromedin U stimulated somatostatin secretion at both physiological and supraphysiological glucose concentrations. Cyclosomatostatin increased insulin secretion and reduced NmU-induced inhibition of insulin secretion. Conclusions: Neuromedin U reduces insulin and increases somatostatin secretion. Blockade of somatostatin action abolishes the inhibition of insulin secretion by NmU. The results of the study suggest that somatostatin mediates the inhibitory action of NmU on insulin secretion.

Collaboration


Dive into the Maciej Sassek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge