Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maciej Studzian is active.

Publication


Featured researches published by Maciej Studzian.


PLOS ONE | 2014

Screening the Expression of ABCB6 in Erythrocytes Reveals an Unexpectedly High Frequency of Lan Mutations in Healthy Individuals

Magdalena Koszarska; Nóra Kucsma; Katalin É. Kiss; György Várady; Melinda Gera; Géza Antalffy; Hajnalka Andrikovics; Attila Tordai; Maciej Studzian; Dominik Strapagiel; Lukasz Pulaski; Yoshihiko Tani; Balázs Sarkadi; Gergely Szakács

Lan is a high-incidence blood group antigen expressed in more than 99.9% of the population. Identification of the human ABC transporter ABCB6 as the molecular basis of Lan has opened the way for studies assessing the relation of ABCB6 function and expression to health and disease. To date, 34 ABCB6 sequence variants have been described in association with reduced ABCB6 expression based on the genotyping of stored blood showing weak or no reactivity with anti-Lan antibodies. In the present study we examined the red blood cell (RBC) surface expression of ABCB6 by quantitative flow cytometry in a cohort of 47 healthy individuals. Sequencing of the entire coding region of the ABCB6 gene in low RBC ABCB6 expressors identified a new allele (IVS9+1G>A, affecting a putative splice site at the boundary of exon 9) and two nonsynonymous SNPs listed in the SNP database (R192Q (rs150221689) and G588 S (rs145526996)). The R192Q mutation showed co-segregation with reduced RBC ABCB6 expression in a family, and we found the G588 S mutation in a compound heterozygous individual with undetectable ABCB6 expression, suggesting that both mutations result in weak or no expression of ABCB6 on RBCs. Analysis of the intracellular expression pattern in HeLa cells by confocal microscopy indicated that these mutations do not compromise overall expression or the endolysosomal localization of ABCB6. Genotyping of two large cohorts, containing 235 and 1039 unrelated volunteers, confirmed the high allele frequency of Lan-mutations. Our results suggest that genetic variants linked to lower or absent cell surface expression of ABCB6/Langereis may be more common than previously thought.


Chemico-Biological Interactions | 2014

Intracellular transport of nanodiamond particles in human endothelial and epithelial cells

Katarzyna Solarska-Ściuk; Agnieszka Gajewska; Sława Glińska; Maciej Studzian; Sylwia Michlewska; Łucja Balcerzak; Janusz Skolimowski; Bogumiła Kolago; Grzegorz Bartosz

During the recent years nanodiamonds have been the subject of interest as possible means of targeted delivery of anticancer substances. Detonation nanodiamonds are attractive candidates for intracellular studies due to their synthesis methods, low cost, good biocompatibility and facile surface functionalizability. Our previous study, in which we used nanoparticles obtained by different methods showed the significance of size and way of production of nanodiamonds in their cellular effects. The aim of this study was to check the ability of surface-modified detonation nanodiamonds to reach intracellular compartments without degradation of the surface-conjugated drug or fluorescent marker. In this study we examined the penetration HUVEC-ST and A549 cells by detonation nanodiamonds (grain size <20 nm) modified by adding to, employing four pharmacological inhibitors of endocytosis, using optical, confocal and transmission electron microscopy We discuss the possibilities, the challenges of studying the endocytic pathways involved in cellular uptake of nanoparticles. Our results suggest that fluorescent nanomaterials are very promising for monitoring the intracellular fate of nanodiamonds.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

PAMAM dendrimer with 4-carbomethoxypyrrolidone—In vitro assessment of neurotoxicity

Anna Janaszewska; Maciej Studzian; Johannes F. Petersen; Mario Ficker; Jørn B. Christensen; Barbara Klajnert-Maculewicz

Cytotoxicity of cationic amino-terminated PAMAM dendrimer and modified PAMAM-pyrrolidone dendrimer was compared. LDH assay and cell visualization technique were employed. Mouse embryonic hippocampal cells (mHippoE-18) were used. The experiments were performed in FBS-deprived medium. Pyrrolidone-modification significantly diminished toxicity of PAMAM dendrimer. The absence of FBS did not reveal significant impact on the toxic effect. Results from LDH assay and MTT test were in good consistency. Low cytotoxicity of PAMAM-pyrrolidone dendrimer increases reliability of the results showing a small impact of this dendrimer on cell viability.


Biochimica et Biophysica Acta | 2015

Endocytosis of ABCG2 drug transporter caused by binding of 5D3 antibody: trafficking mechanisms and intracellular fate

Maciej Studzian; Grzegorz Bartosz; Lukasz Pulaski

ABCG2, a metabolite and xenobiotic transporter located at the plasma membrane (predominantly in barrier tissues and progenitor cells), undergoes a direct progressive endocytosis process from plasma membrane to intracellular compartments upon binding of 5D3 monoclonal antibody. This antibody is specific to an external epitope on the protein molecule and locks it in a discrete conformation within its activity cycle, presumably providing a structural trigger for the observed internalization phenomenon. Using routine and novel assays, we show that ABCG2 is endocytosed by a mixed mechanism: partially via a rapid, clathrin-dependent pathway and partially in a cholesterol-dependent, caveolin-independent manner. While the internalization process is entirely dynamin-dependent and converges initially at the early endosome, subsequent intracellular fate of ABCG2 is again twofold: endocytosis leads to only partial lysosomal degradation, while a significant fraction of the protein is retained in a post-endosomal compartment with the possibility of at least partial recycling back to the cell surface. This externally triggered, conformation-related trafficking pathway may serve as a general regulatory paradigm for membrane transporters, and its discovery was made possible thanks to consistent application of quantitative methods.


Frontiers in Cellular Neuroscience | 2017

Glutamate Deregulation in Ketamine-Induced Psychosis—A Potential Role of PSD95, NMDA Receptor and PMCA Interaction

Malwina Lisek; Bozena Ferenc; Maciej Studzian; Lukasz Pulaski; Feng Guo; Ludmila Zylinska; Tomasz Boczek

Ketamine causes psychotic episodes and is often used as pharmacological model of psychotic-like behavior in animals. There is increasing evidence that molecular mechanism of its action is more complicated than just N-methyl-D-aspartic acid (NMDA) receptor antagonism and involves interaction with the components of calcium homeostatic machinery, in particular plasma membrane calcium pump (PMCA). Therefore, in this study we aimed to characterize brain region-specific effects of ketamine on PMCA activity, interaction with NMDA receptor through postsynaptic density protein 95 (PSD95) scaffolding proteins and glutamate release from nerve endings. In our study, ketamine induced behavioral changes in healthy male rats consistent with psychotic effects. In the same animals, we were able to demonstrate significant inhibition of plasma membrane calcium ATPase (PMCA) activity in cerebellum, hippocampus and striatum. The expression level and isoform composition of PMCAs were also affected in some of these brain compartments, with possible compensatory effects of PMCA1 substituting for decreased expression of PMCA3. Expression of the PDZ domain-containing scaffold protein PSD95 was induced and its association with PMCA4 was higher in most brain compartments upon ketamine treatment. Moreover, increased PSD95/NMDA receptor direct interaction was also reported, strongly suggesting the formation of multiprotein complexes potentially mediating the effect of ketamine on calcium signaling. We further support this molecular mechanism by showing brain region-specific changes in PSD95/PMCA4 spatial colocalization. We also show that ketamine significantly increases synaptic glutamate release in cortex and striatum (without affecting total tissue glutamate content), inducing the expression of vesicular glutamate transporters and decreasing the expression of membrane glutamate reuptake pump excitatory amino acid transporters 2 (EAAT2). Thus, ketamine-mediated PMCA inhibition, by decreasing total Ca2+ clearing potency, may locally raise cytosolic Ca2+ promoting excessive glutamate release. Regional alterations in glutamate secretion can be further driven by PSD95-mediated spatial recruitment of signaling complexes including glutamate receptors and calcium pumps, representing a novel mechanism of psychogenic action of ketamine.


Colloids and Surfaces B: Biointerfaces | 2017

Modified PAMAM dendrimer with 4-carbomethoxypyrrolidone surface groups-its uptake, efflux, and location in a cell

Anna Janaszewska; Maciej Studzian; Johannes F. Petersen; Mario Ficker; Valentina Paolucci; Jørn B. Christensen; Donald A. Tomalia; Barbara Klajnert-Maculewicz

Traditional amine terminated PAMAM dendrimers may be readily surface engineered by a facile one-pot conversion with dialkyl itaconate esters into 4-carbomethoxypyrrolidone terminated PAMAM (G=0-4) dendrimers. These terminated dendrimers are uniquely characterized by exhibiting blue fluorescence emissions (λexc=370nm, λmaxem=440nm). Thanks to this property they can be directly analyzed by confocal microscopy and flow cytometry without additional fluorescence labeling, treatment of dendrimers with chemicals or adjusting pH. These intrinsically fluorescent dendrimers were shown to be very effective for assessing important biological cell features such as cellular entry, intracellular trafficking/localization and efflux properties. For example, all tested cell lines (e.g., B14, BRL-3A, and mHippoE-18) rapidly accumulated PAMAM-pyrrolidone dendrimer. The BRL-3A cell line exhibited both cytoplasmic and nuclear localization patterns; whereas in B14 cells and mHippoE-18 cells, the blue dendrimer fluorescence could only be detected in intracellular endosome-like structures. The dendrimer was observed to be released from all three cell lines during the first 24h; however, efflux was substantially slower from the B-14 cell line. The highest efflux rate was observed for the mHippoE-18 cells. This first successful biological experiment opens a broad spectrum of using these dendrimers as new bioimaging agents for extensive biological cell characterizations.


Biochimica et Biophysica Acta | 2016

Leishmania tarentolae as a host for heterologous expression of functional human ABCB6 transporter.

Jacek Grebowski; Maciej Studzian; Grzegorz Bartosz; Lukasz Pulaski

The need for large amounts of reproducibly produced and isolated protein arises not only in structural studies, but even more so in biochemical ones, and with regard to ABC transporters it is especially pressing when faced with the prospect of enzymatic/transport activity studies, substrate screening etc. Thus, reliable heterologous expression systems/model organisms for large and complex proteins are at a premium. We have verified the applicability of the recently established novel eukaryotic expression system, using Leishmania tarentolae as a host, for human ABC protein overexpression. We succeeded in overexpressing human ABCB6, a protein with controversial subcellular localization and multiple proposed cellular functions. We were able to demonstrate its efficient expression in the expected subcellular locations as well as biochemical activity of the overexpressed protein (ATPase activity and porphyrin-like substrate transport). This activity was absent in cells overexpressing the catalytically inactive variant of ABCB6 (K629M). We demonstrate the possibility of applying a cost-effective expression system to study the activity of membrane transporters from the ABC superfamily.


Biomacromolecules | 2017

Mechanisms of Internalization of Maltose-Modified Poly(propyleneimine) Glycodendrimers into Leukemic Cell Lines

Maciej Studzian; Aleksandra Szulc; Anna Janaszewska; Dietmar Appelhans; Łukasz Pułaski; Barbara Klajnert-Maculewicz

Poly(propyleneimine) dendrimers of fourth generation partially modified with maltose (open shell structure, PPI-m OS) have been proposed as carriers for nucleotide anticancer drugs. The aim of this work was to provide basic insight into interactions between fluorescently labeled PPI-m dendrimer and two distinct leukemia cell models: CCRF-1301 lymphoid cell line and HL-60 myeloid cell line. We applied qualitative confocal imaging and quantitative flow cytometry, as well as trypan blue quenching and pharmacological inhibition, to investigate the course, kinetics, and molecular mechanisms of internalization of nanoparticles. CCRF-1301 cells take up glycodendrimer macromolecules via a relatively slow, adsorptive endocytosis process, which is cholesterol-dependent, clathrin- and caveolin-independent, and not followed by recycling or exocytosis. Morphological features of this phenomenon point to the involvement of aggregation-induced cell polarity changes (capping). In HL-60 cells, internalization is very fast, independent of binding to the cell surface, and proceeds from the fluid phase via a classical clathrin-dependent mechanism, ending up in an endolysosomal compartment from which it is not further released. This substantial difference in internalization rate and mechanism between two cell types has important repercussions for potential application of this class of glycodendrimers as drug delivery agents.


Life Sciences | 2016

ABCB1-overexpressing MDCK-II cells are hypersensitive to 3-bromopyruvic acid

Izabela Sadowska-Bartosz; Jacek Grebowski; Ewa Kępka; Maciej Studzian; Grzegorz Bartosz; Łukasz Pułaski

AIMS Cancer cells, due to the Warburg effect, are more dependent on glycolysis than normal cells, so glycolytic inhibitor 3-bromopyruvic acid (3-BP) was proposed as a promising candidate for anticancer therapy. Overexpression of multidrug transporters is the main reason of resistance of cancer cells to chemotherapy. As the activity of multidrug transporters imposes an energetic burden on the cells, it can be expected that inhibition of ATP generation may exert a selective cytotoxicity to cells overexpressing multidrug transporters. The aim of this study was to compare the effect of 3-BP on the survival and ATP level in MDCK-II cells and MDCK-II cells overexpressing ABCB1 (Pgp) or ABCG2 (BCRP). MAIN METHODS Cell survival was measured with resazurin and with neutral red. ATP level was assayed with luciferin/luciferase kit. Luteolin transport was measured by an original method described in the paper. KEY FINDINGS 3-BP (10-200μM) induced a decrease of ATP level after 1-h incubation in all cell lines studied, more drastically in ABCB1-overexpressing cells. 50 and 200μM 3-BP significantly decreased cell viability; the effect was more pronounced for ABCB1-overexpressing cells. PSC833, inhibitor of ABCB1, ameliorated the toxic effect of 3-BP on MDCK-II ABCB1 cells and MDCK-II cells. 3-BP inhibited luteolin transport in MDCK-II ABCG2 cells. SIGNIFICANCE These results indicate that 3-BP shows selective toxicity against ABCB1- but not ABCG2-overexpressing cells, apparently due to enhanced ATP depletion but in a manner independent of the transport activity of Pgp, suggesting a novel mechanism of hypersensitivity of ABCB1-overexpressing cells to 3-BP.


Biomacromolecules | 2018

Glycodendrimer Nanocarriers for Direct Delivery of Fludarabine Triphosphate to Leukemic Cells: Improved Pharmacokinetics and Pharmacodynamics of Fludarabine

Michał Gorzkiewicz; Izabela Jatczak-Pawlik; Maciej Studzian; Łukasz Pułaski; Dietmar Appelhans; Brigitte Voit; Barbara Klajnert-Maculewicz

Fludarabine, a nucleoside analogue antimetabolite, has complicated pharmacokinetics requiring facilitated transmembrane transport and intracellular conversion to triphosphate nucleotide form (Ara-FATP), causing it to be susceptible to emergence of drug resistance. We are testing a promising strategy to improve its clinical efficacy by direct delivery of Ara-FATP utilizing a biocompatible glycodendrimer nanocarrier system. Here, we present results of a proof-of-concept experiment in several in vitro-cultured leukemic cell lines (CCRF, THP-1, U937) using noncovalent complexes of maltose-modified poly(propyleneimine) dendrimer and fludarabine triphosphate. We show that Ara-FATP has limited cytotoxic activity toward investigated cells relative to free nucleoside (Ara-FA), but complexation with the glycodendrimer (which does not otherwise influence cellular metabolism) drastically increases its toxicity. Moreover, we show that transport via hENT1 is a limiting step in Ara-FA toxicity, while complexation with dendrimer allows Ara-FATP to kill cells even in the presence of a hENT1 inhibitor. Thus, the use of glycodendrimers for drug delivery would allow us to circumvent naturally occurring drug resistance due to decreased transporter activity. Finally, we demonstrate that complex formation does not change the advantageous multifactorial intracellular pharmacodynamics of Ara-FATP, preserving its high capability to inhibit DNA and RNA synthesis and induce apoptosis via the intrinsic pathway. In comparison to other nucleoside analogue drugs, fludarabine is hereby demonstrated to be an optimal candidate for maltose glycodendrimer-mediated drug delivery in antileukemic therapy.

Collaboration


Dive into the Maciej Studzian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario Ficker

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcin Popielarski

Medical University of Łódź

View shared research outputs
Researchain Logo
Decentralizing Knowledge