Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maciej Wiznerowicz is active.

Publication


Featured researches published by Maciej Wiznerowicz.


Journal of Virology | 2003

Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference.

Maciej Wiznerowicz; Didier Trono

ABSTRACT RNA interference has emerged as a powerful technique to downregulate the expression of specific genes in cells and in animals, thus opening new perspectives in fields ranging from developmental genetics to molecular therapeutics. Here, we describe a method that significantly expands the potential of RNA interference by permitting the conditional suppression of genes in mammalian cells. Within a lentivirus vector background, we subjected the polymerase III promoter-dependent production of small interfering RNAs to doxycycline-controllable transcriptional repression. The resulting system can achieve the highly efficient and completely drug-inducible knockdown of cellular genes. As lentivirus vectors can stably transduce a wide variety of targets both in vitro and in vivo and can be used to generate transgenic animals, the present system should have broad applications.


Wspolczesna Onkologia-Contemporary Oncology | 2015

Review The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge

Katarzyna Tomczak; Patrycja Czerwińska; Maciej Wiznerowicz

The Cancer Genome Atlas (TCGA) is a public funded project that aims to catalogue and discover major cancer-causing genomic alterations to create a comprehensive “atlas” of cancer genomic profiles. So far, TCGA researchers have analysed large cohorts of over 30 human tumours through large-scale genome sequencing and integrated multi-dimensional analyses. Studies of individual cancer types, as well as comprehensive pan-cancer analyses have extended current knowledge of tumorigenesis. A major goal of the project was to provide publicly available datasets to help improve diagnostic methods, treatment standards, and finally to prevent cancer. This review discusses the current status of TCGA Research Network structure, purpose, and achievements.


Nature Methods | 2006

Tuning silence: conditional systems for RNA interference

Maciej Wiznerowicz; Jolanta Szulc; Didier Trono

RNA interference (RNAi) has emerged as a powerful tool to downregulate the expression of specific genes. Drug-inducible systems allowing for conditional RNAi that offer the unique potential to modulate expression of virtually any endogenous gene in the cell have been recently developed. Their applications are very broad, ranging from basic studies of gene function to translational research including modeling of human diseases, analysis of potential side effects of candidate drugs, testing of gene-based therapies and loss-of-function screens. Here we summarize the state of the art of systems allowing for drug-controllable knockdown, and provide a description of their current and future applications.


Journal of Virology | 2004

Lentivirus-mediated RNA interference of DC-SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells.

Jean-François Arrighi; Marjorie Pion; Maciej Wiznerowicz; Teunis B. H. Geijtenbeek; Eduardo Garcia; Shahnaz Abraham; Florence Leuba; Valérie Dutoit; Odile Ducrey-Rundquist; Yvette van Kooyk; Didier Trono; Vincent Piguet

ABSTRACT In the early events of human immunodeficiency virus type 1 (HIV-1) infection, immature dendritic cells (DCs) expressing the DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) receptor capture small amounts of HIV-1 on mucosal surfaces and spread viral infection to CD4+ T cells in lymph nodes (22, 34, 45). RNA interference has emerged as a powerful tool to gain insight into gene function. For this purpose, lentiviral vectors that express short hairpin RNA (shRNA) for the delivery of small interfering RNA (siRNA) into mammalian cells represent a powerful tool to achieve stable gene silencing. In order to interfere with DC-SIGN function, we developed shRNA-expressing lentiviral vectors capable of conditionally suppressing DC-SIGN expression. Selectivity of inhibition of human DC-SIGN and L-SIGN and chimpanzee and rhesus macaque DC-SIGN was obtained by using distinct siRNAs. Suppression of DC-SIGN expression inhibited the attachment of the gp120 envelope glycoprotein of HIV-1 to DC-SIGN transfectants, as well as transfer of HIV-1 to target cells in trans. Furthermore, shRNA-expressing lentiviral vectors were capable of efficiently suppressing DC-SIGN expression in primary human DCs. DC-SIGN-negative DCs were unable to enhance transfer of HIV-1 infectivity to T cells in trans, demonstrating an essential role for the DC-SIGN receptor in transferring infectious viral particles from DCs to T cells. The present system should have broad applications for studying the function of DC-SIGN in the pathogenesis of HIV as well as other pathogens also recognized by this receptor.


Journal of Biological Chemistry | 2002

The HIV-1 Nef Protein and Phagocyte NADPH Oxidase Activation

Frederik Vilhardt; Olivier Plastre; Makoto Sawada; Kazuo Suzuki; Maciej Wiznerowicz; Etsuko Kiyokawa; Didier Trono; Karl-Heinz Krause

Nef, a multifunctional HIV protein, activates the Vav/Rac/p21-activated kinase (PAK) signaling pathway. Given the potential role of this pathway in the activation of the phagocyte NADPH oxidase, we have investigated the effect of the HIV-1 Nef protein on the phagocyte respiratory burst. Microglia (cell line and primary culture) were transduced with lentiviral expression vectors. Expression of Nef did not activate the NADPH oxidase by itself but led to a massive enhancement of the responses to a variety of stimuli (Ca2+ ionophore, formyl peptide, endotoxin). These effects were not caused by up-regulation of phagocyte NADPH oxidase subunits. Nef mutants lacking motifs involved in the interaction with Vav and PAK failed to reproduce the effects of wild type Nef, suggesting a role for the Vav/Rac/PAK signaling pathway. The following results suggest a key role for Rac in the priming effect of Nef. (i) Inactivation of Rac by Clostridium difficile toxin B abolished the Nef effect. (ii) The fraction of activated Rac1 was increased in Nef-transduced cells, and (iii) the dominant positive Rac1(V12) mutant mimicked the effect of Nef. These results are to our knowledge the first analysis of the effect of Rac activation on the NADPH oxidase in intact phagocytes. Rac activation is not sufficient to stimulate the phagocyte NADPH oxidase; however, it markedly enhances the NADPH oxidase response to other stimuli.


Journal of Biological Chemistry | 2007

The Kruppel-associated box repressor domain can trigger de novo promoter methylation during mouse early embryogenesis.

Maciej Wiznerowicz; Johan Jakobsson; Jolanta Szulc; Shunyao Liao; Alexandra Quazzola; Friedrich Beermann; Patrick Aebischer; Didier Trono

The Krüppel-associated box (KRAB) domain is a transcriptional repression module responsible for the DNA binding-dependent gene silencing activity of hundreds of vertebrate zinc finger proteins. We previously exploited KRAB-mediated repression within the context of a tet repressor-KRAB fusion protein and of lentiviral vectors to create a method of external gene control. We demonstrated that with this system transcriptional silencing was fully reversible in cell culture as well as in vivo. Here we reveal that, in sharp contrast, KRAB-mediated repression results in irreversible gene silencing through promoter DNA methylation if it acts during the first few days of mouse development.


Journal of Biological Chemistry | 2011

Genetic and Pharmacological Inhibition of PDK1 in Cancer Cells CHARACTERIZATION OF A SELECTIVE ALLOSTERIC KINASE INHIBITOR

Kumiko Nagashima; Stuart D. Shumway; Sriram Sathyanarayanan; Albert H. Chen; Brian M. Dolinski; Youyuan Xu; Heike Keilhack; Thi Lien-Anh Nguyen; Maciej Wiznerowicz; Lixia Li; Bart Lutterbach; An Chi; Cloud P. Paweletz; Timothy M. Allison; Youwei Yan; Sanjeev Munshi; Anke Klippel; Manfred Kraus; Ekaterina V. Bobkova; Sujal V. Deshmukh; Zangwei Xu; Uwe Mueller; Alexander A. Szewczak; Bo-Sheng Pan; Victoria M. Richon; Roy M. Pollock; Peter Blume-Jensen; Alan B. Northrup; Jannik N. Andersen

Phosphoinositide-dependent kinase 1 (PDK1) is a critical activator of multiple prosurvival and oncogenic protein kinases and has garnered considerable interest as an oncology drug target. Despite progress characterizing PDK1 as a therapeutic target, pharmacological support is lacking due to the prevalence of nonspecific inhibitors. Here, we benchmark literature and newly developed inhibitors and conduct parallel genetic and pharmacological queries into PDK1 function in cancer cells. Through kinase selectivity profiling and x-ray crystallographic studies, we identify an exquisitely selective PDK1 inhibitor (compound 7) that uniquely binds to the inactive kinase conformation (DFG-out). In contrast to compounds 1–5, which are classical ATP-competitive kinase inhibitors (DFG-in), compound 7 specifically inhibits cellular PDK1 T-loop phosphorylation (Ser-241), supporting its unique binding mode. Interfering with PDK1 activity has minimal antiproliferative effect on cells growing as plastic-attached monolayer cultures (i.e. standard tissue culture conditions) despite reduced phosphorylation of AKT, RSK, and S6RP. However, selective PDK1 inhibition impairs anchorage-independent growth, invasion, and cancer cell migration. Compound 7 inhibits colony formation in a subset of cancer cell lines (four of 10) and primary xenograft tumor lines (nine of 57). RNAi-mediated knockdown corroborates the PDK1 dependence in cell lines and identifies candidate biomarkers of drug response. In summary, our profiling studies define a uniquely selective and cell-potent PDK1 inhibitor, and the convergence of genetic and pharmacological phenotypes supports a role of PDK1 in tumorigenesis in the context of three-dimensional in vitro culture systems.


Journal of Virology | 2007

Suppression of the Sendai virus M protein through a novel short interfering RNA approach inhibits viral particle production but does not affect viral RNA synthesis

Geneviève Mottet-Osman; Frédéric Iseni; Thierry Pelet; Maciej Wiznerowicz; Dominique Garcin; Laurent Roux

ABSTRACT Short RNA interference is more and more widely recognized as an effective method to specifically suppress viral functions in eukaryotic cells. Here, we used an experimental system that allows suppression of the Sendai virus (SeV) M protein by using a target sequence, derived from the green fluorescent protein gene, that was introduced in the 3′ untranslated region of the M protein mRNA. Silencing of the M protein gene was eventually achieved by a small interfering RNA (siRNA) directed against this target sequence. This siRNA was constitutively expressed in a cell line constructed by transduction with an appropriate lentivirus vector. Suppression of the M protein was sufficient to diminish virus production by 50- to 100-fold. This level of suppression had no apparent effect on viral replication and transcription, supporting the lack of M involvement in SeV transcription or replication control.


Gene Therapy | 2011

Lineage- and stage-restricted lentiviral vectors for the gene therapy of chronic granulomatous disease

Isabelle Barde; Elisa Laurenti; Sonia Verp; Maciej Wiznerowicz; Sandra Offner; A Viornery; A Galy; Andreas Trumpp; Didier Trono

Insertional mutagenesis represents a serious adverse effect of gene therapy with integrating vectors. However, although uncontrolled activation of growth-promoting genes in stem cells can predictably lead to oncological processes, this is far less likely if vector transcriptional activity can be restricted to fully differentiated cells. Diseases requiring phenotypic correction only in mature cells offer such an opportunity, provided that lineage/stage-restricted systems can be properly tailored. In this study, we followed this reasoning to design lentiviral vectors for the gene therapy of chronic granulomatous disease (CGD), an immune deficiency due a loss of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in phagocytes, most often secondary to mutations in gp91phox. Using self-inactivating HIV1-derived vectors as background, we first expressed enhanced green fluorescent protein (eGFP) from a minimal gp91phox promoter, adding various natural or synthetic transcriptional regulatory elements to foster both specificity and potency. The resulting vectors were assessed either by transplantation or by lentiviral transgenesis, searching for combinations conferring strong and specific expression into mature phagocytic cells. The most promising vector was modified to express gp91phox and used to treat CGD mice. High-level restoration of NADPH activity was documented in granulocytes from the treated animals. We propose that this lineage-specific lentiviral vector is a suitable candidate for the gene therapy of CGD.


Journal of Virology | 2008

Genotypic Features of Lentivirus Transgenic Mice

Marc Olivier Sauvain; Alexander P. Dorr; Brian J. Stevenson; Alexandra Quazzola; Felix Naef; Maciej Wiznerowicz; Frédéric Schütz; Victor Jongeneel; Denis Duboule; François Spitz; Didier Trono

ABSTRACT Lentivector-mediated transgenesis is increasingly used, whether for basic studies as an alternative to pronuclear injection of naked DNA or to test candidate gene therapy vectors. In an effort to characterize the genetic features of this approach, we first measured the frequency of germ line transmission of individual proviruses established by infection of fertilized mouse oocytes. Seventy integrants from 11 founder (G0) mice were passed to 111 first generation (G1) pups, for a total of 255 events corresponding to an average rate of transmission of 44%. This implies that integration had most often occurred at the one- or two-cell stage and that the degree of genotypic mosaicism in G0 mice obtained through this approach is generally minimal. Transmission analysis of eight individual proviruses in 13 G2 mice obtained by a G0-G1 cross revealed only 8% of proviral homozygosity, significantly below the 25% expected from purely Mendelian transmission, suggesting counter-selection due to interference with the functions of targeted loci. Mapping of 239 proviral integration sites in 49 founder animals revealed that about 60% resided within annotated genes, with a marked tendency for clustering in the middle of the transcribed region, and that integration was not influenced by the transcriptional orientation. Transcript levels of a set of arbitrarily chosen target genes were significantly higher in two-cell embryos than in embryonic stem cells or adult somatic cells, suggesting that, as previously noted in other settings, lentiviral vectors integrate preferentially into regions of the genome that are transcriptionally active or poised for activation.

Collaboration


Dive into the Maciej Wiznerowicz's collaboration.

Top Co-Authors

Avatar

Didier Trono

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Andrzej Mackiewicz

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Patrycja Czerwińska

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Dariusz Iżycki

Poznan University of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Artem Sokolov

University of California

View shared research outputs
Top Co-Authors

Avatar

Houtan Noushmehr

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerzy Z. Nowak

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Sylwia Mazurek

Poznan University of Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge