Maddalena Adorno
University of Padua
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maddalena Adorno.
Cell | 2009
Maddalena Adorno; Michelangelo Cordenonsi; Marco Montagner; Sirio Dupont; Christine Wong; Byron Hann; Aldo Solari; Sara Bobisse; Maria Rondina; Vincenza Guzzardo; Anna Parenti; Antonio Rosato; Silvio Bicciato; Allan Balmain; Stefano Piccolo
TGFbeta ligands act as tumor suppressors in early stage tumors but are paradoxically diverted into potent prometastatic factors in advanced cancers. The molecular nature of this switch remains enigmatic. Here, we show that TGFbeta-dependent cell migration, invasion and metastasis are empowered by mutant-p53 and opposed by p63. Mechanistically, TGFbeta acts in concert with oncogenic Ras and mutant-p53 to induce the assembly of a mutant-p53/p63 protein complex in which Smads serve as essential platforms. Within this ternary complex, p63 functions are antagonized. Downstream of p63, we identified two candidate metastasis suppressor genes associated with metastasis risk in a large cohort of breast cancer patients. Thus, two common oncogenic lesions, mutant-p53 and Ras, selected in early neoplasms to promote growth and survival, also prefigure a cellular set-up with particular metastasis proclivity by TGFbeta-dependent inhibition of p63 function.
Cell | 2009
Sirio Dupont; Anant Mamidi; Michelangelo Cordenonsi; Marco Montagner; Luca Zacchigna; Maddalena Adorno; Graziano Martello; Michael J. Stinchfield; Sandra Soligo; Leonardo Morsut; Masafumi Inui; Stefano Moro; Nicola Modena; Francesco Argenton; Stuart J. Newfeld; Stefano Piccolo
The assembly of the Smad complex is critical for TGFbeta signaling, yet the mechanisms that inactivate or empower nuclear Smad complexes are less understood. By means of siRNA screen we identified FAM (USP9x), a deubiquitinase acting as essential and evolutionarily conserved component in TGFbeta and bone morphogenetic protein signaling. Smad4 is monoubiquitinated in lysine 519 in vivo, a modification that inhibits Smad4 by impeding association with phospho-Smad2. FAM reverts this negative modification, re-empowering Smad4 function. FAM opposes the activity of Ectodermin/Tif1gamma (Ecto), a nuclear factor for which we now clarify a prominent role as Smad4 monoubiquitin ligase. Our study points to Smad4 monoubiquitination and deubiquitination as a way for cells to set their TGFbeta responsiveness: loss of FAM disables Smad4-dependent responses in several model systems, with Ecto being epistatic to FAM. This defines a regulative ubiquitination step controlling Smads that is parallel to those impinging on R-Smad phosphorylation.
Cell | 2005
Sirio Dupont; Luca Zacchigna; Michelangelo Cordenonsi; Sandra Soligo; Maddalena Adorno; Massimo Rugge; Stefano Piccolo
TGF-beta signaling is essential for development and proliferative homeostasis. During embryogenesis, maternal determinants act in concert with TGF-beta signals to form mesoderm and endoderm. In contrast, ectoderm specification requires the TGF-beta response to be attenuated, although the mechanisms by which this is achieved remain unknown. In a functional screen for ectoderm determinants, we have identified Ectodermin (Ecto). In Xenopus embryos, Ecto is essential for the specification of the ectoderm and acts by restricting the mesoderm-inducing activity of TGF-beta signals to the mesoderm and favoring neural induction. Ecto is a RING-type ubiquitin ligase for Smad4, a TGF-beta signal transducer. Depletion of Ecto in human cells enforces TGF-beta-induced cytostasis and, moreover, plays a causal role in limiting the antimitogenic effects of Smad4 in tumor cells. We propose that Ectodermin is a key switch in the control of TGF-beta gene responses during early embryonic development and cell proliferation.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Huiping Liu; Manishkumar Patel; Jennifer A. Prescher; Antonia Patsialou; Dalong Qian; Jiahui Lin; Susanna Wen; Ya Fang Chang; Michael H. Bachmann; Yohei Shimono; Piero Dalerba; Maddalena Adorno; Neethan Lobo; Janet Bueno; Frederick M. Dirbas; Sumanta Goswami; George Somlo; John Condeelis; Christopher H. Contag; Sanjiv S. Gambhir; Michael F. Clarke
To examine the role of breast cancer stem cells (BCSCs) in metastasis, we generated human-in-mouse breast cancer orthotopic models using patient tumor specimens, labeled with optical reporter fusion genes. These models recapitulate human cancer features not captured with previous models, including spontaneous metastasis in particular, and provide a useful platform for studies of breast tumor initiation and progression. With noninvasive imaging approaches, as few as 10 cells of stably labeled BCSCs could be tracked in vivo, enabling studies of early tumor growth and spontaneous metastasis. These advances in BCSC imaging revealed that CD44+ cells from both primary tumors and lung metastases are highly enriched for tumor-initiating cells. Our metastatic cancer models, combined with noninvasive imaging techniques, constitute an integrated approach that could be applied to dissect the molecular mechanisms underlying the dissemination of metastatic CSCs (MCSCs) and to explore therapeutic strategies targeting MCSCs in general or to evaluate individual patient tumor cells and predict response to therapy.
Cell | 2006
Luca Zacchigna; Carmine Vecchione; Antonella Notte; Michelangelo Cordenonsi; Sirio Dupont; Silvia Maretto; Giuseppe Cifelli; Alessandra Ferrari; Angelo Maffei; Carla Fabbro; Paola Braghetta; Gennaro Marino; Giulio Selvetella; Alessandra Aretini; Claudio Colonnese; Umberto Bettarini; Giovanni Russo; Sandra Soligo; Maddalena Adorno; Paolo Bonaldo; Dino Volpin; Stefano Piccolo; Giuseppe Lembo; Giorgio M. Bressan
TGF-beta proteins are main regulators of blood vessel development and maintenance. Here, we report an unprecedented link between TGF-beta signaling and arterial hypertension based on the analysis of mice mutant for Emilin1, a cysteine-rich secreted glycoprotein expressed in the vascular tree. Emilin1 knockout animals display increased blood pressure, increased peripheral vascular resistance, and reduced vessel size. Mechanistically, we found that Emilin1 inhibits TGF-beta signaling by binding specifically to the proTGF-beta precursor and preventing its maturation by furin convertases in the extracellular space. In support of these findings, genetic inactivation of Emilin1 causes increased TGF-beta signaling in the vascular wall. Strikingly, high blood pressure observed in Emilin1 mutants is rescued to normal levels upon inactivation of a single TGF-beta1 allele. This study highlights the importance of modulation of TGF-beta availability in the pathogenesis of hypertension.
Nature | 2007
Graziano Martello; Luca Zacchigna; Masafumi Inui; Marco Montagner; Maddalena Adorno; Anant Mamidi; Leonardo Morsut; Sandra Soligo; Uyen Tran; Sirio Dupont; Michelangelo Cordenonsi; Oliver Wessely; Stefano Piccolo
MicroRNAs are crucial modulators of gene expression, yet their involvement as effectors of growth factor signalling is largely unknown. Ligands of the transforming growth factor-β superfamily are essential for development and adult tissue homeostasis. In early Xenopus embryos, signalling by the transforming growth factor-β ligand Nodal is crucial for the dorsal induction of the Spemann’s organizer. Here we report that Xenopus laevis microRNAs miR-15 and miR-16 restrict the size of the organizer by targeting the Nodal type II receptor Acvr2a. Endogenous miR-15 and miR-16 are ventrally enriched as they are negatively regulated by the dorsal Wnt/β-catenin pathway. These findings exemplify the relevance of microRNAs as regulators of early embryonic patterning acting at the crossroads of fundamental signalling cascades.
Proceedings of the National Academy of Sciences of the United States of America | 2010
A.G. Lisa Ooi; Debashis Sahoo; Maddalena Adorno; Yulei Wang; Irving L. Weissman; Christopher Y. Park
MicroRNAs profoundly impact hematopoietic cells by regulating progenitor cell-fate decisions, as well as mature immune effector function. However to date, microRNAs that regulate hematopoietic stem cell (HSC) function have been less well characterized. Here we show that microRNA-125b (miR-125b) is highly expressed in HSCs and its expression decreases in committed progenitors. Overexpression of miR-125b in mouse HSC enhances their function, demonstrated through serial transplantation of highly purified HSC, and enriches for the previously described Slamf1loCD34− lymphoid-balanced and the Slamf1negCD34− lymphoid-biased cell subsets within the multipotent HSC (CD34-KLS) fraction. Mature peripheral blood cells derived from the miR-125b–overexpressing HSC are skewed toward the lymphoid lineage. Consistent with this observation, miR-125b overexpression significantly increases the number of early B-progenitor cells within the spleen and induces the expansion and enrichment of the lymphoid-balanced and lymphoid-biased HSC subset via an antiapoptotic mechanism, reducing the mRNA expression levels of two proapoptotic targets, Bmf and KLF13. The antiapoptotic effect of miR-125b is more pronounced in the lymphoid-biased HSC subset because of their intrinsic higher baseline levels of apoptosis. These effects of miR-125b are associated with the development of lymphoproliferative disease, marked by expansion of CD8+ T lymphocytes. Taken together, these data reveal that miR-125b regulates HSC survival and can promote lymphoid-fate decisions at the level of the HSC by preferentially expanding lymphoid-balanced and lymphoid-biased HSC.
Nature | 2013
Maddalena Adorno; Shaheen S. Sikandar; Siddhartha Mitra; Angera Kuo; Benedetta Nicolis di Robilant; Veronica Haro-Acosta; Youcef Ouadah; Marco Quarta; Jacqueline Rodriguez; Dalong Qian; Vadiyala M. Reddy; Samuel H. Cheshier; Craig C. Garner; Michael F. Clarke
Down’s syndrome results from full or partial trisomy of chromosome 21. However, the consequences of the underlying gene–dosage imbalance on adult tissues remain poorly understood. Here we show that in Ts65Dn mice, which are trisomic for 132 genes homologous to genes on human chromosome 21, triplication of Usp16 reduces the self-renewal of haematopoietic stem cells and the expansion of mammary epithelial cells, neural progenitors and fibroblasts. In addition, Usp16 is associated with decreased ubiquitination of Cdkn2a and accelerated senescence in Ts65Dn fibroblasts. Usp16 can remove ubiquitin from histone H2A on lysine 119, a critical mark for the maintenance of multiple somatic tissues. Downregulation of Usp16, either by mutation of a single normal Usp16 allele or by short interfering RNAs, largely rescues all of these defects. Furthermore, in human tissues overexpression of USP16 reduces the expansion of normal fibroblasts and postnatal neural progenitors, whereas downregulation of USP16 partially rescues the proliferation defects of Down’s syndrome fibroblasts. Taken together, these results suggest that USP16 has an important role in antagonizing the self-renewal and/or senescence pathways in Down’s syndrome and could serve as an attractive target to ameliorate some of the associated pathologies.
bioRxiv | 2018
Maddalena Adorno; Benedetta Nicolis di Robilant; Shaheen S. Sikandar; Veronica Haro Acosta; Jane Antony; Craig Heller; Michael F. Clarke
Regulation of the Wnt pathway in stem cells and primary tissues is still poorly understood. Here we report that Usp16, a negative regulator of Bmi1/PRC1 function, modulates the Wnt pathway in mammary epithelia, primary human fibroblasts and MEFs, affecting their expansion and self-renewal potential. In mammary glands, reduced levels of Usp16 increase tissue responsiveness to Wnt, resulting in upregulation of the downstream Wnt target Axin2, expansion of the basal compartment and increased in vitro and in vivo epithelial regeneration. Usp16 regulation of the Wnt pathway in mouse and human tissues is at least in part mediated by activation of Cdkn2a, a regulator of senescence. At the molecular level, Usp16 affects Rspo-mediated phosphorylation of LRP6. In Down’s Syndrome (DS), triplication of Usp16 dampens the activation of the Wnt pathway. Usp16 copy number normalization restores normal Wnt activation in Ts65Dn mice models. Genetic upregulation of the Wnt pathway in Ts65Dn mice rescues the proliferation defect observed in mammary epithelial cells. All together, these findings link important stem cell regulators like Bmi1/Usp16 and Cdkn2a to Wnt signaling, and have implications for designing therapies for conditions, like DS, aging or degenerative diseases, where the Wnt pathway is hampered.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Stephen B. Willingham; Jens-Peter Volkmer; Andrew J. Gentles; Debashis Sahoo; Piero Dalerba; Siddhartha Mitra; Jian Wang; Humberto Contreras-Trujillo; Robin Martin; Justin D. Cohen; Patricia Lovelace; Ferenc A. Scheeren; Mark P. Chao; Kipp Weiskopf; Chad Tang; Anne K. Volkmer; Tejaswitha J Naik; Theresa A. Storm; Adriane R. Mosley; Badreddin Edris; Seraina Schmid; Chris K. Sun; Mei-Sze Chua; Oihana Murillo; Pradeep S. Rajendran; Adriel C. Cha; Robert K. Chin; Dongkyoon Kim; Maddalena Adorno; Tal Raveh