Madeleine Goutx
Aix-Marseille University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Madeleine Goutx.
Marine Chemistry | 1980
Madeleine Goutx; A. Saliot
Abstract Dissolved, particulate, and plankton hydrocarbons and fatty acids have been analysed by gas chromatography and gas chromatography/mass spectrometry in samples taken during a 16-month period at two stations located in Villefranche Bay, Mediterranean Sea. The study has been conducted in connection with regular determinations of chlorophyll a , zooplankton biomass and species of net plankton samples. The n-alkanes show a regular distribution pattern of odd and even carbon numbered compounds between n-C 21 and n-C 36 with additional characteristics associated with biological phenomena: abundance of n-C 15 and n-C 17 , predominance of pristane over n-C 17 in zooplankton-rich samples, predominance of even carbon numbered n-alkanes in the range C 18 –C 20 , generally associated with a mixture of higher molecular weight even carbon numbered n-alkanes, modifying the regular distribution of the n-alkanes. For the station located at the end of the bay, the correlation between particulate hydrocarbons, particulate n-alkanes and chlorophyll a contents (∼ 0.630) is significant — well below the 0.05 level. There is discussion of this correlation which indicates a possible direct contribution of phytoplankton to the hydrocarbons of seawater or other biochemical associations between plankton and dissolved organic matter. Polyunsaturated fatty acids such as C 20 and C 22 are more abundant in plankton and suspended matter than in seawater. Data relative to those components allow us to evaluate the percentage of living plankton in suspended matter. General trends indicate the existence of a relation between particulate fatty acid and zooplanktonic biomass concentrations in the bay water.
Deep-sea Research Part Ii-topical Studies in Oceanography | 2002
Fidel Echevarría; Jesús García Lafuente; Miguel Bruno; Gabriel Gorsky; Madeleine Goutx; Nicolás González; Carlos M. García; Fernando Gómez; Juan M. Vargas; Marc Picheral; Laurent Striby; Manuel Varela; José Juan Alonso; Andreas Reul; Andrés Cózar; Laura Prieto; Tarek Sarhan; Francisco Plaza; Francisco Jiménez-Gómez
This study presents a joint analysis of the distributions of some biogeochemical variables and their relation to the hydrodynamics of Gibraltar Strait. It is a synthesis paper that brings together many results obtained during CANIGO project. We show the role of hydrodynamics as a forcing agent for the plankton community structure in the Strait, with emphasis on the two physical processes that we propose as key factors for the coupling: interface position and oscillations, and mixing processes along the Strait. As a general pattern, autotrophic plankton biomass increases at the Strait from southwest to northeast, a tendency that coincides with a gradual elevation of the interface depth in the same direction. The different mechanisms of mixing that take place in the Strait are briefly reviewed: The occurrence of the internal hydraulic jump is an important mechanism of mixing constrained to the spring tide situations, but other processes such as the generation of arrested internal waves of wavelength around 1 km are proposed as a complementary mixing mechanism, particularly during neap tides situations. Both mechanisms, the elevation of the pycnocline and these mixing events, can enhance biological productivity and biomass accumulation on the northeastern sector of the Strait, since phytoplankton cells are there packaged in a water mass with sufficient light and nutrients and smaller advective velocity. There is a clear north–south difference in the biological response to these upwelling episodes in the eastern section, with high nutrient and low chlorophyll in the south and the opposite in the north. The deeper interface and the greater water speed are the proposed reasons for this lower nutrient uptake on the southeastern sector. Finally, the temporal scales of variation of the mixing events, the influence of its periodicity on the productivity of the area and the influence of these upwelling episodes in the nearest Albor! an Sea are discussed. r 2002 Elsevier Science
Journal of Chromatography A | 1999
Laurent Striby; Raymond Lafont; Madeleine Goutx
Mono- and diacylglycerols are important intermediates in glycerolipid biodegradation and intracellular signalling pathways. A method for mass determination of these lipid classes in marine particles was developed using the Iatroscan, which combines thin layer chromatography (TLC) and flame ionisation detection (FID) techniques. We improved existing protocols by adding two elution steps: hexane-diethyl-ether-formic acid (70:30:0.2, v/v/v) after triacylglycerol and free fatty acid scan, and acetone 100% followed by chloroform-acetone-formic acid (99:1:0.2, v/v/v) after 1,2 diacylglycerols. Diacylglycerol isomers 1,2 and 1,3 were separated from each other, as well as from free sterols in standards and marine lipids from sediment trap particles. Monoacylglycerols were separated from pigments and galactosyl-lipids in the same trap samples and in a rich pigment phytoplankton extract of Dunaliella viridis. Quantitation of each class in samples was performed after calibration with 0.5 to 2 micrograms of standards. As many as 17 lipid classes can be identified and quantified in samples using this proposed six-step development.
Chemosphere | 2014
Nicolas Ferretto; Marc Tedetti; Catherine Guigue; Stéphane Mounier; Roland Redon; Madeleine Goutx
Polycyclic aromatic hydrocarbons (PAHs) and pesticides are among the most widespread organic contaminants in aquatic environments. Because of their aromatic structure, PAHs and pesticides have intrinsic fluorescence properties in the ultraviolet/blue spectral range. In this study, excitation-emission matrix (EEM) fluorescence spectroscopy and parallel factor (PARAFAC) analysis were used to characterise and discriminate fluorescence signatures of nine PAHs and three pesticides at the μg L(-1) level in the presence of humic substances (0.1-10 mgCL(-1)). These contaminants displayed a diversity of fluorescence signatures regarding spectral position (λEx: 220-335 nm, λEm: 310-414 nm), Stokes shift (39-169 nm) and number of peaks (1-8), with detection limits ranging from 0.02 to 1.29μgL(-1). The EEM/PARAFAC method applied to mixtures of PAHs with humic substances validated a seven-component model that included one humic-like fluorophore and six PAH-like fluorophores. The EEM/PARAFAC method applied to mixtures of pesticides with humic substances validated a six-component model that included one humic-like fluorophore and three pesticide-like fluorophores. The EEM/PARAFAC method adequately quantified most of the contaminants for humic substance concentrations not exceeding 2.5 mg CL(-1). The application of this method to natural (marine) samples was demonstrated through (1) the match between the Ex and Em spectra of PARAFAC components and the Ex and Em spectra of standard PAHs, and (2) the good linear correlations between the fluorescence intensities of PARAFAC components and the PAH concentrations determined by GC-MS.
Marine Pollution Bulletin | 2010
Marc Tedetti; Catherine Guigue; Madeleine Goutx
We evaluated the performances of a submersible ultraviolet fluorometer (EnviroFlu-HC, TriOS Optical Sensors) dedicated to the real time measurement of polycyclic aromatic hydrocarbons (PAHs) in the aquatic media. We conducted calibration experiments and in situ measurements in the coastal Mediterranean Sea. We found that the EnviroFlu-HC was not strictly specific to PAHs, even though it exhibited the highest sensitivity for phenanthrene, but could response to tryptophan-like material as well, and in a much less extent, to humic substances. The sensor signal showed great spatial and temporal variations in clean and polluted sites, with likely a high contribution of PAHs in the harbors, and a high contribution of tryptophan-like and humic-like materials in the sewage effluent. We conclude that the EnviroFlu-HC is a good tool for monitoring anthropogenic inputs in the coastal waters, although its utilization should be combined to other fluorescence measurements to improve the information about the nature of the aromatic compounds detected.
Organic Geochemistry | 1990
Madeleine Goutx; C. Gerin; Jean-Claude Bertrand
Abstract Iatroscan TLC-FID combines the separatory capabilities of thin-layer chromatography (TLC) (on silica coated chromarods) with the possibility of quantitation by flame ionization detection (FID). It can be used to separate lipid extracts into classes of compounds ranging from neutral to polar products. The rapidity with which this system provides lipid class profiles from small samples makes it particularly useful in oceanographic studies where routine analyses of large numbers of samples are required. Lipid classes were analysed in 4 marine bacterial strains grown on various substrates and 10 microalgae isolated from the marine environment and grown in batch cultures. Data on lipid composition of these microorganisms were obtained and compared to literature data. Results show that ratios between classes of compounds within the different groups of microorganisms were characteristic enough to constitute a good print of bacterial or phytoplankton sources in organic matter in sea water. In a preliminary study, phospholipid classes from a bacterial strain and a microalga were separated. Results show that the determination of ratios between phospholipid classes in organic matter could represent an improvement in the utilization of lipid classes as biomarkers.
Organic Geochemistry | 2002
Christos Panagiotopoulos; Richard Sempéré; Ingrid Obernosterer; Laurent Striby; Madeleine Goutx; S. Gautier; Raymond Lafont
Abstract Large particles (>60 μm) were collected at 30 and 200 m water depth by in situ pumps in the southern Indian Ocean in January–February 1999. The samples were incubated under laboratory conditions with their own bacterial assemblages for 7–17 days in batches under oxic conditions in the dark. Particulate and dissolved fractions of organic carbon, amino acids, sugars and lipids, as well as bacterial production were quantified over time. During the experiments, 32–38% and 43–50% of total organic carbon (TOC) was mineralized and considered as labile material in the Polar Front Zone (PFZ) and Sub-Antarctic region (SAr), respectively. This material was utilized with a bacterial growth efficiency (BGE) of 10–21% (PFZ) and 12–17% (SAr), with the lower values being observed for surface samples (30 m). These results imply that most (79–90%) of the incorporated carbon from large particles was respired as CO2. The study revealed that the initial relative abundance of the three main classes of organic matter, including sugars, amino acids and lipids, varied greatly between SAr and PFZ, with sugars being more abundant in SAr (15–19% of TOC) than in PFZ (8–9% of TOC). In the PFZ, mineralization rates of amino acids and lipids were two to ten fold higher than those of sugars, whereas the opposite was observed in SAr biodegradation experiments. Moreover, our results suggested that organic carbon is mineralized by bacteria more rapidly in the euphotic zone of the SAr than the PFZ. The differences observed between the two sites may be related to the more rapid dissolution of silica as well as the higher temperatures and bacterial production encountered in SAr waters. The bacterial processes apparently affect the composition of material sinking to the ocean interior.
Science of The Total Environment | 2014
Catherine Guigue; Marc Tedetti; Nicolas Ferretto; Nicole Garcia; Laurence Méjanelle; Madeleine Goutx
Dissolved aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs) were analysed from surface water collected in continental, harbour and off-shore marine sites from Marseilles coastal area (Northwestern Mediterranean Sea) from February 2011 to February 2012. AH and PAH concentrations were in the range of 0.04-0.53 μgl(-1) and 8.1-405 ngl(-1), respectively. They both displayed seasonal and spatial variations in their concentrations and molecular composition. The lowest AH concentrations were found in summer and the highest PAH concentrations in winter. Both natural and anthropogenic (pyrogenic and petrogenic) hydrocarbon sources were identified. In winter, concentrations and composition patterns highlighted an increase in the signature of unburned and combusted fossil fuels, while they suggested an enhancement of weathering processes in summer months. Hydrocarbon inputs to the dissolved phase seemed to originate mainly from the atmosphere and the Rhône River. Hydrocarbon additional sources were identified only at the harbour site, emphasising the intense shipping traffic and industrial activities occurring in one of the most important Mediterranean harbours. This study underscores the strong dynamics of dissolved hydrocarbons and the uncoupling of the sources, transport and removing processes affecting AHs and PAHs. It also demonstrates the pertinence of taking this dynamics into account for the budget assessments of organic pollutants in coastal environments.
Marine Pollution Bulletin | 2011
Catherine Guigue; Marc Tedetti; Sébastien Giorgi; Madeleine Goutx
Aliphatic (AHs) and polycyclic aromatic hydrocarbons (PAHs) were analyzed in dissolved and particulate material from surface microlayer (SML) and subsurface water (SSW) sampled at nearshore observation stations, sewage effluents and harbour sites from Marseilles coastal area (Northwestern Mediterranean) in 2009 and 2010. Dissolved and particulate AH concentrations ranged 0.05-0.41 and 0.04-4.3 μg l(-1) in the SSW, peaking up to 38 and 1366 μg l(-1) in the SML, respectively. Dissolved and particulate PAHs ranged 1.9-98 and 1.9-21 ng l(-1) in the SSW, amounting up 217 and 1597 ng l(-1) in the SML, respectively. In harbours, hydrocarbons were concentrated in the SML, with enrichment factors reaching 1138 for particulate AHs. Besides episodic dominance of biogenic and pyrogenic inputs, a moderate anthropisation from petrogenic sources dominated suggesting the impact of shipping traffic and surface runoffs on this urbanised area. Rainfalls increased hydrocarbon concentrations by a factor 1.9-11.5 in the dissolved phase.
World Journal of Microbiology & Biotechnology | 1997
D.R. Husain; Madeleine Goutx; M. Acquaviva; M. Gilewicz; J.C. Bertrand
Three hydrocarbon uptake modes (adherence, emulsification and solubilization) were identified and quantified in cells and supernatants of a mesophilic marine bacterium Pseudomonas nautica strain 617 grown on eicosane. The adherence capacity was related to the enrichment of cells with wax esters and glycolipids. The emulsifying activity was related to the presence of extracellular biosurfactants composed of proteins, carbohydrates and lipids (35:63:2). The intensity of substrate uptake modes was sensitive to temperatures currently found in the original environment of P. nautica (16°C, 20°C and 32°C). When temperature decreased, a significant increase in adherence and emulsifying activity was observed in relation to biochemical changes, whereas solubilizing activity decreased. The marine bacterium was able to degrade 53–59% eicosane at the end of exponential growth after 13, 5 and 3 days incubation at 16°C, 20°C and 32°C respectively.