Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Madeleine Peschke is active.

Publication


Featured researches published by Madeleine Peschke.


Nature | 2015

X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis

Kristina Haslinger; Madeleine Peschke; Clara Brieke; Egle Maximowitsch; Max J. Cryle

Non-ribosomal peptide synthetase (NRPS) mega-enzyme complexes are modular assembly lines that are involved in the biosynthesis of numerous peptide metabolites independently of the ribosome. The multiple interactions between catalytic domains within the NRPS machinery are further complemented by additional interactions with external enzymes, particularly focused on the final peptide maturation process. An important class of NRPS metabolites that require extensive external modification of the NRPS-bound peptide are the glycopeptide antibiotics (GPAs), which include vancomycin and teicoplanin. These clinically relevant peptide antibiotics undergo cytochrome P450-catalysed oxidative crosslinking of aromatic side chains to achieve their final, active conformation. However, the mechanism underlying the recruitment of the cytochrome P450 oxygenases to the NRPS-bound peptide was previously unknown. Here we show, through in vitro studies, that the X-domain, a conserved domain of unknown function present in the final module of all GPA NRPS machineries, is responsible for the recruitment of oxygenases to the NRPS-bound peptide to perform the essential side-chain crosslinking. X-ray crystallography shows that the X-domain is structurally related to condensation domains, but that its amino acid substitutions render it catalytically inactive. We found that the X-domain recruits cytochrome P450 oxygenases to the NRPS and determined the interface by solving the structure of a P450–X-domain complex. Additionally, we demonstrated that the modification of peptide precursors by oxygenases in vitro—in particular the installation of the second crosslink in GPA biosynthesis—occurs only in the presence of the X-domain. Our results indicate that the presentation of peptidyl carrier protein (PCP)-bound substrates for oxidation in GPA biosynthesis requires the presence of the NRPS X-domain to ensure conversion of the precursor peptide into a mature aglycone, and that the carrier protein domain alone is not always sufficient to generate a competent substrate for external cytochrome P450 oxygenases.


Angewandte Chemie | 2015

Sequential In Vitro Cyclization by Cytochrome P450 Enzymes of Glycopeptide Antibiotic Precursors Bearing the X-Domain from Nonribosomal Peptide Biosynthesis.

Clara Brieke; Madeleine Peschke; Kristina Haslinger; Max J. Cryle

The biosynthesis of the glycopeptide antibiotics, which include vancomycin and teicoplanin, relies on the interplay between the peptide-producing non-ribosomal peptide synthetase (NRPS) and Cytochrome P450 enzymes (P450s) that catalyze side-chain crosslinking of the peptide. We demonstrate that sequential in vitro P450-catalyzed cyclization of peptide substrates is enabled by the use of an NRPS peptide carrier protein (PCP)-X di-domain as a P450 recruitment platform. This study reveals that whilst the precursor peptide sequence influences the installation of the second crosslink by the P450 OxyAtei , activity is not restricted to the native teicoplanin peptide. Initial peptide cyclization is possible with teicoplanin and vancomycin OxyB homologues, and the latter displays excellent activity with all substrate combinations tested. By using non-natural X-domain substrates, bicyclization of hexapeptides was also shown, which demonstrates the utility of this method for the cyclization of varied peptide substrates in vitro.


Journal of the American Chemical Society | 2016

Regulation of the P450 Oxygenation Cascade Involved in Glycopeptide Antibiotic Biosynthesis

Madeleine Peschke; Kristina Haslinger; Clara Brieke; Jochen Reinstein; Max J. Cryle

Glycopeptide antibiotics (GPAs) are nonribosomal peptides rich in modifications introduced by external enzymes. These enzymes act on the free peptide aglycone or intermediates bound to the nonribosomal peptide synthetase (NRPS) assembly line. In this process the terminal module of the NRPS plays a crucial role as it contains a unique recruitment platform (X-domain) interacting with three to four modifying Cytochrome P450 (P450) enzymes that are responsible for cyclizing bound peptides. However, whether these enzymes share the same binding site on the X-domain and how the order of the cyclization steps is orchestrated has remained elusive. In this study we investigate the first two reactions in teicoplanin aglycone maturation catalyzed by the enzymes OxyBtei and OxyAtei. We demonstrate that both enzymes interact with the X-domain via the identical interaction site with similar affinities, irrespective of the peptide modification stage, while their catalytic activity is restricted to the correctly cross-linked peptide. On the basis of steady state kinetics of the OxyBtei-catalyzed reaction, we propose a model for P450 recruitment and peptide modification that involves continuous association/dissociation of the P450 enzymes with the NRPS, followed by specific recognition of the peptide cyclization state by the P450 (scanning). This leads to an induced conformational change that enhances the affinity of the enzyme/substrate complex and initiates catalysis; product release then occurs, with the product itself becoming the substrate for the second enzyme in the pathway. This model rationalizes our experimental findings for this complex enzyme cascade and provides insights into the orchestration of the sequential peptide tailoring reactions on the terminal NRPS module in GPA biosynthesis.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Evidence for glycoprotein transport into complex plastids

Madeleine Peschke; Daniel Moog; Andreas Klingl; Uwe G. Maier; Franziska Hempel

Diatoms are microalgae that possess so-called “complex plastids,” which evolved by secondary endosymbiosis and are surrounded by four membranes. Thus, in contrast to primary plastids, which are surrounded by only two membranes, nucleus-encoded proteins of complex plastids face additional barriers, i.e., during evolution, mechanisms had to evolve to transport preproteins across all four membranes. This study reveals that there exist glycoproteins not only in primary but also in complex plastids, making transport issues even more complicated, as most translocation machineries are not believed to be able to transport bulky proteins. We show that plastidal reporter proteins with artificial N-glycosylation sites are indeed glycosylated during transport into the complex plastid of the diatom Phaeodactylum tricornutum. Additionally, we identified five endogenous glycoproteins, which are transported into different compartments of the complex plastid. These proteins get N-glycosylated during transport across the outermost plastid membrane and thereafter are transported across the second, third, and fourth plastid membranes in the case of stromal proteins. The results of this study provide insights into the evolutionary pressure on translocation mechanisms and pose unique questions on the operating mode of well-known transport machineries like the translocons of the outer/inner chloroplast membranes (Toc/Tic).


Current Opinion in Structural Biology | 2016

Understanding the crucial interactions between Cytochrome P450s and non-ribosomal peptide synthetases during glycopeptide antibiotic biosynthesis.

Madeleine Peschke; Melanie Gonsior; Roderich D. Süssmuth; Max J. Cryle

The importance of Cytochrome P450-catalyzed modifications of natural products produced by non-ribosomal peptide synthetase machineries is most apparent during glycopeptide antibiotic biosynthesis: specifically, the formation of essential amino acid side chains crosslinks in the peptide backbone of these clinically relevant antibiotics. These cyclization reactions take place whilst the peptide substrate remains bound to the non-ribosomal peptide synthetase in a process mediated by a conserved domain of previously unknown function-the X-domain. This review addresses recent advances in understanding P450 recruitment to non-ribosomal peptide synthetase-bound substrates and highlights the importance of both carrier proteins and the X-domain in different P450-catalyzed reactions.


Scientific Reports | 2016

F-O-G ring formation in glycopeptide antibiotic biosynthesis is catalysed by OxyE

Madeleine Peschke; Clara Brieke; Max J. Cryle

The glycopeptide antibiotics are peptide-based natural products with impressive antibiotic function that derives from their unique three-dimensional structure. Biosynthesis of the glycopeptide antibiotics centres of the combination of peptide synthesis, mediated by a non-ribosomal peptide synthetase, and the crosslinking of aromatic side chains of the peptide, mediated by the action of a cascade of Cytochrome P450s. Here, we report the first example of in vitro activity of OxyE, which catalyses the F-O-G ring formation reaction in teicoplanin biosynthesis. OxyE was found to only act after an initial C-O-D crosslink is installed by OxyB and to require an interaction with the unique NRPS domain from glycopeptide antibiotic – the X-domain – in order to display catalytic activity. We could demonstrate that OxyE displays limited stereoselectivity for the peptide, which mirrors the results from OxyB-catalysed turnover and is in sharp contrast to OxyA. Furthermore, we show that activity of a three-enzyme cascade (OxyB/OxyA/OxyE) in generating tricyclic glycopeptide antibiotic peptides depends upon the order of addition of the OxyA and OxyE enzymes to the reaction. This work demonstrates that complex enzymatic cascades from glycopeptide antibiotic biosynthesis can be reconstituted in vitro and provides new insights into the biosynthesis of these important antibiotics.


Biochemistry | 2017

Chlorinated Glycopeptide Antibiotic Peptide Precursors Improve Cytochrome P450-Catalyzed Cyclization Cascade Efficiency

Madeleine Peschke; Clara Brieke; Rob J.A. Goode; Ralf B. Schittenhelm; Max J. Cryle

The activity of glycopeptide antibiotics (GPAs) depends upon important structural modifications to their precursor heptapeptide backbone: specifically, the cytochrome P450-catalyzed oxidative cross-linking of aromatic side chains as well as the halogenation of specific residues within the peptide. The timing of halogenation and its effect on the cyclization of the peptide are currently unclear. Our results show that chlorination of peptide precursors improves their processing by P450 enzymes in vitro, which provides support for GPA halogenation occurring prior to peptide cyclization during nonribosomal peptide synthesis. We could also determine that the activity of the second enzyme in the oxidative cyclization cascade, OxyA, remains higher for chlorinated peptide substrates even when the biosynthetic GPA product possesses an altered chlorination pattern, which supports the role of the chlorine atoms in orienting the peptide substrate in the active site of these enzymes.


Methods of Molecular Biology | 2016

Facile synthetic access to glycopeptide antibiotic precursor peptides for the investigation of cytochrome P450 action in glycopeptide antibiotic biosynthesis

Clara Brieke; Veronika Kratzig; Madeleine Peschke; Max J. Cryle

The glycopeptide antibiotics are an important class of complex, medically relevant peptide natural products. Given that the production of such compounds all stems from in vivo biosynthesis, understanding the mechanisms of the natural assembly system--consisting of a nonribosomal-peptide synthetase machinery (NRPS) and further modifying enzymes--is vital. In order to address the later steps of peptide biosynthesis, which are catalyzed by Cytochrome P450s that interact with the peptide-producing nonribosomal peptide synthetase, peptide substrates are required: these peptides must also be in a form that can be conjugated to carrier protein domains of the nonribosomal peptide synthetase machinery. Here, we describe a practical and effective route for the solid phase synthesis of glycopeptide antibiotic precursor peptides as their Coenzyme A (CoA) conjugates to allow enzymatic conjugation to carrier protein domains. This route utilizes Fmoc-chemistry suppressing epimerization of racemization-prone aryl glycine derivatives and affords high yields and excellent purities, requiring only a single step of simple solid phase extraction for chromatographic purification. With this, comprehensive investigations of interactions between various NRPS-bound substrates and Cytochrome P450s are enabled.


ACS Chemical Biology | 2017

The Thioesterase Domain in Glycopeptide Antibiotic Biosynthesis Is Selective for Cross-Linked Aglycones

Madeleine Peschke; Clara Brieke; Michael Heimes; Max J. Cryle

The biosynthesis of the glycopeptide antibiotics (GPAs)-which include teicoplanin and vancomycin-is a complex enzymatic process relying on the interplay of nonribosomal peptide synthesis and a cytochrome P450-mediated cyclization cascade. This unique cyclization cascade generates the highly cross-linked state of these nonribosomal peptides, which is crucial for their antimicrobial activity. Given that these essential oxidative transformations occur while the peptide remains bound to the terminal module of the nonribosomal peptide synthetase (NRPS) machinery, it is important to assess the selectivity of the terminal thioesterase (TE) domain and how this domain contributes to the maintenance of an efficient biosynthetic pathway while at the same time ensuring GPA maturation is completed. In this study, we report the in vitro characterization of the thioesterase domain from teicoplanin biosynthesis, the first GPA thioesterase to be characterized. Our results show that the activity of this TE domain relies on the presence of an unusual extended N-terminal linker region that appears to be unique to the NRPS machineries found in GPA biosynthesis. In addition, we show that the activity of this domain against carrier protein bound substrates is dramatically enhanced for mature GPA aglycones as opposed to linear peptides and partially cyclized intermediates. These results demonstrate how the interplay between NRPS and P450s during late stage GPA biosynthesis is not only maintained but also leads to the efficient production of mature GPA aglycones. Thus, GPA TE domains represent another impressive example of the ability of TE domains to act as logic gates during NRPS biosynthesis, ensuring that essential late-stage peptide modifications are completed before catalyzing the release of the mature, bioactive peptide product.


Plant Signaling & Behavior | 2013

Glycoprotein import: a common feature of complex plastids?

Madeleine Peschke; Franziska Hempel

Complex plastids evolved by secondary endosymbiosis and are, in contrast to primary plastids, surrounded by 3 or 4 envelope membranes. Recently, we provided evidence that in diatoms proteins exist that get N-glycosylated during transport across the outermost membrane of the complex plastid. This gives rise to unique questions on the transport mechanisms of these bulky proteins, which get transported across up to 3 further membranes into the plastid stroma. Here we discuss our results in an evolutionary context and speculate about the existence of plastidal glycoproteins in other organisms with complex plastids.

Collaboration


Dive into the Madeleine Peschke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roderich D. Süssmuth

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge