Madhukumar Venkatesh
Yeshiva University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Madhukumar Venkatesh.
Science | 2010
Bret D. Wallace; Hongwei Wang; Kimberly Terry Lane; John E. Scott; Jillian Orans; Ja Seol Koo; Madhukumar Venkatesh; Christian Jobin; Li An Yeh; Sridhar Mani; Matthew R. Redinbo
Blocking Interfering Microbes Irinotecan is a widely used anticancer pro-drug that is converted in the liver into the active form, but when it gets into the gut, the normally benign microbial flora can convert it into the toxic form, which kills the rapidly multiplying gut epithelium as it would kill rapidly dividing tumor cells, and thus causes diarrhea. Wallace et al. (p. 831; see the Perspective by Patel and Kaufmann) used high-throughput screening to identify inhibitors that target the offending bacterial enzyme, β-glucuronidase, without killing the bacteria or affecting orthologous mammalian enzymes. Crystal structures revealed the molecular basis of selectivity, and in vivo studies showed that an inhibitor protected mice from irinotecan-induced toxicity. Targeting an enzyme in human microbial symbiotes might prevent a chemotherapeutic side effect. The dose-limiting side effect of the common colon cancer chemotherapeutic CPT-11 is severe diarrhea caused by symbiotic bacterial β-glucuronidases that reactivate the drug in the gut. We sought to target these enzymes without killing the commensal bacteria essential for human health. Potent bacterial β-glucuronidase inhibitors were identified by high-throughput screening and shown to have no effect on the orthologous mammalian enzyme. Crystal structures established that selectivity was based on a loop unique to bacterial β-glucuronidases. Inhibitors were highly effective against the enzyme target in living aerobic and anaerobic bacteria, but did not kill the bacteria or harm mammalian cells. Finally, oral administration of an inhibitor protected mice from CPT-11–induced toxicity. Thus, drugs may be designed to inhibit undesirable enzyme activities in essential microbial symbiotes to enhance chemotherapeutic efficacy.
Clinical Cancer Research | 2008
Divya Gupta; Madhukumar Venkatesh; Hongwei Wang; Sean Kim; Michael Sinz; Gary L. Goldberg; Kathleen D. Whitney; Clifford Longley; Sridhar Mani
Purpose: We examined the presence of the pregnane X receptor (PXR) and its effects on ovarian cancer cells after activation by its cognate ligand. Experimental Design: SKOV-3 and OVCAR-8 ovarian carcinoma cells were analyzed for expression of PXR by quantitative reverse transcription-PCR and Western blot. Human ovarian cancer tissue was also analyzed for PXR expression by immunochemistry. Ligand (agonist)–induced PXR target genes were analyzed in SKOV-3 cells by quantitative reverse transcription-PCR. SKOV-3 cell proliferation was assessed by MTT assay. In vivo confirmation of in vitro effects of PXR ligands were done in NOD.SCID mice carrying SKOV-3 xenografts. Results: PXR is expressed in ovarian cancer cells. In SKOV-3 cells, PXR is functional and its activation by cognate ligands induces PXR target genes (CYP2B6, CYP3A4, and UGT1A1) but not MDR1 and MRP2. PXR activation in SKOV-3 cells induces cell proliferation and drug resistance. In mice harboring SKOV-3 xenografts, rifampicin (PXR agonist) induces cell proliferation and tumor growth. Conclusion: PXR activation, regardless of the type of ligand agonist present, promotes the “malignant” phenotype of cancer cells. These data serve as the basis for finding novel nontoxic inhibitors of PXR activation as a method to control cell growth and prevent induction of drug resistance.
PLOS ONE | 2012
Wei Dou; Subhajit Mukherjee; Hao Li; Madhukumar Venkatesh; Hongwei Wang; Ariel Peleg; Sridhar Chilimuri; Zheng Tao Wang; Ying Feng; Eric R. Fearon; Sridhar Mani
Pregnane X Receptor (PXR), a master regulator of drug metabolism and inflammation, is abundantly expressed in the gastrointestinal tract. Baicalein and its O-glucuronide baicalin are potent anti-inflammatory and anti-cancer herbal flavonoids that undergo a complex cycle of interconversion in the liver and gut. We sought to investigate the role these flavonoids play in inhibiting gut inflammation by an axis involving PXR and other potential factors. The consequences of PXR regulation and activation by the herbal flavonoids, baicalein and baicalin were evaluated in vitro in human colon carcinoma cells and in vivo using wild-type, Pxr-null, and humanized (hPXR) PXR mice. Baicalein, but not its glucuronidated metabolite baicalin, activates PXR in a Cdx2-dependent manner in vitro, in human colon carcinoma LS174T cells, and in the murine colon in vivo. While both flavonoids abrogate dextran sodium sulfate (DSS)-mediated colon inflammation in vivo, oral delivery of a potent bacterial β-glucuronidase inhibitor eliminates baicalin’s effect on gastrointestinal inflammation by preventing the microbial conversion of baicalin to baicalien. Finally, reduction of gastrointestinal inflammation requires the binding of Cdx2 to a specific proximal site on the PXR promoter. Pharmacological targeting of intestinal PXR using natural metabolically labile ligands could serve as effective and potent therapeutics for gut inflammation that avert systemic drug interactions.
Molecular Pharmacology | 2011
Madhukumar Venkatesh; Hongwei Wang; Julie Cayer; Melissa Leroux; Dany Salvail; Bhaskar Das; Jay Wrobel; Sridhar Mani
The pregnane X receptor (PXR) is a master regulator of xenobiotic clearance and is implicated in deleterious drug interactions (e.g., acetaminophen hepatotoxicity) and cancer drug resistance. However, small-molecule targeting of this receptor has been difficult; to date, directed synthesis of a relatively specific PXR inhibitor has remained elusive. Here we report the development and characterization of a first-in-class novel azole analog [1-(4-(4-(((2R,4S)-2-(2,4-difluorophenyl)-2-methyl-1,3-dioxolan-4-yl)methoxy)phenyl)piperazin-1-yl)ethanone (FLB-12)] that antagonizes the activated state of PXR with limited effects on other related nuclear receptors (i.e., liver X receptor, farnesoid X receptor, estrogen receptor α, peroxisome proliferator-activated receptor γ, and mouse constitutive androstane receptor). We investigated the toxicity and PXR antagonist effect of FLB-12 in vivo. Compared with ketoconazole, a prototypical PXR antagonist, FLB-12 is significantly less toxic to hepatocytes. FLB-12 significantly inhibits the PXR-activated loss of righting reflex to 2,2,2-tribromoethanol (Avertin) in vivo, abrogates PXR-mediated resistance to 7-ethyl-10-hydroxycamptothecin (SN-38) in colon cancer cells in vitro, and attenuates PXR-mediated acetaminophen hepatotoxicity in vivo. Thus, relatively selective targeting of PXR by antagonists is feasible and warrants further investigation. This class of agents is suitable for development as chemical probes of PXR function as well as potential PXR-directed therapeutics.
Journal of Biological Chemistry | 2013
Hao Li; Matthew R. Redinbo; Madhukumar Venkatesh; Sean Ekins; Anik Chaudhry; Nicolin Bloch; Abdissa Negassa; Paromita Mukherjee; Ganjam V. Kalpana; Sridhar Mani
Background: Ketoconazole binds to and antagonizes pregnane X receptor (PXR) activation. Results: Yeast high throughput screens of PXR mutants define a unique region for ketoconazole binding. Conclusion: Ketoconazole genetically interacts with specific PXR surface residues. Significance: A yeast-based genetic method to discover novel nuclear receptor interactions with ligands that associate with surface binding sites is suggested. The pregnane X receptor (PXR) is a master regulator of xenobiotic metabolism, and its activity is critical toward understanding the pathophysiology of several diseases, including inflammation, cancer, and steatosis. Previous studies have demonstrated that ketoconazole binds to ligand-activated PXR and antagonizes receptor control of gene expression. Structure-function as well as computational docking analysis suggested a putative binding region containing critical charge clamp residues Gln-272, and Phe-264 on the AF-2 surface of PXR. To define the antagonist binding surface(s) of PXR, we developed a novel assay to identify key amino acid residues on PXR based on a yeast two-hybrid screen that examined mutant forms of PXR. This screen identified multiple “gain-of-function” mutants that were “resistant” to the PXR antagonist effects of ketoconazole. We then compared our screen results identifying key PXR residues to those predicted by computational methods. Of 15 potential or putative binding residues based on docking, we identified three residues in the yeast screen that were then systematically verified to functionally interact with ketoconazole using mammalian assays. Among the residues confirmed by our study was Ser-208, which is on the opposite side of the protein from the AF-2 region critical for receptor regulation. The identification of new locations for antagonist binding on the surface or buried in PXR indicates novel aspects to the mechanism of receptor antagonism. These results significantly expand our understanding of antagonist binding sites on the surface of PXR and suggest new avenues to regulate this receptor for clinical applications.
Environmental Health Perspectives | 2010
Matthew D. Krasowski; Erica J. Reschly; Madhukumar Venkatesh; Sridhar Mani; Sean Ekins
Background The pregnane X receptor (PXR) is a key transcriptional regulator of many genes [e.g., cytochrome P450s (CYP2C9, CYP3A4, CYP2B6), MDR1] involved in xenobiotic metabolism and excretion. Objectives As part of an evaluation of different approaches to predict compound affinity for nuclear hormone receptors, we used the molecular docking program GOLD and a hybrid scoring scheme based on similarity weighted GoldScores to predict potential PXR agonists in the ToxCast database of pesticides and other industrial chemicals. We present some of the limitations of different in vitro systems, as well as docking and ligand-based computational models. Methods Each ToxCast compound was docked into the five published crystallographic structures of human PXR (hPXR), and 15 compounds were selected based on their consensus docking scores for testing. In addition, we used a Bayesian model to classify the ToxCast compounds into PXR agonists and nonagonists. hPXR activation was determined by luciferase-based reporter assays in the HepG2 and DPX-2 human liver cell lines. Results We tested 11 compounds, of which 6 were strong agonists and 2 had weak agonist activity. Docking results of additional compounds were compared with data reported in the literature. The prediction sensitivity of PXR agonists in our sample ToxCast data set (n = 28) using docking and the GoldScore was higher than with the hybrid score at 66.7%. The prediction sensitivity for PXR agonists using GoldScore for the entire ToxCast data set (n = 308) compared with data from the NIH (National Institutes of Health) Chemical Genomics Center data was 73.8%. Conclusions Docking and the GoldScore may be useful for prioritizing large data sets prior to in vitro testing with good sensitivity across the sample and entire ToxCast data set for hPXR agonists.
Journal of Biochemical and Molecular Toxicology | 2013
Madhukumar Venkatesh; Nijaguna B. Prasad; Tej Sing; Veerabasappa T. Gowda
Comprehensive knowledge of venom composition is very important for effective management of snake envenomation and antivenom preparation. Daboia russelii venom from the eastern region of India is the most neurotoxic among the four venom samples investigated. From the eastern D. russelii venom sample, neurotoxic peptide has been purified by combined method of ion exchange gel permeation chromatography and reversed phase high performance liquid chromatography. Molecular weight of Daboia neurotoxin III (DNTx‐III) found to be 6,849 Da (as measured on matrix‐assisted laser desorption/ionisation‐time of flight mass spectrometer), and N‐terminal amino acid sequences is I K C F I T P D U T S Q A. Approximate LD50 dosage was 0.24 mg/kg body weight. It produced concentration‐ and time‐dependent inhibition of indirectly stimulated twitches of Rana hexadactyla sciatic nerve gastrocnemius muscle preparations. Chemical modification of DNTx‐III tryptophan residue(s) reduced the twitch height inhibition property of toxin, signifying the importance of tryptophan residues for the neurotoxic function. This type of neurotoxic peptide is unique to east Indian regional D. russelii venom.
Scientific Reports | 2016
Zhijuan Qiu; Jorge L. Cervantes; Basak B. Cicek; Subhajit Mukherjee; Madhukumar Venkatesh; Leigh Maher; Juan C. Salazar; Sridhar Mani; Kamal M. Khanna
The nuclear pregnane X receptor (PXR) plays a central role in regulating xenobiotic metabolism. We now report a novel role for PXR as a critical negative regulator of innate immunity after infection. Pxr−/− mice exhibited remarkably elevated pro-inflammatory cytokine and chemokine production following infection with Listeria monocytogenes (Lm). Despite the more robust innate immune response, Pxr−/− mice were highly susceptible to Lm infection. Surprisingly, disruption of the Toll-like receptor 4 (TLR4) but not TLR2 signaling restored the inflammation to normal levels and the ability to clear Lm in Pxr−/− mice. Mechanistically, the heightened inflammation in Pxr−/− mice resulted in the death of inflammatory monocytes that led to the enhanced susceptibility to Lm infection. These data demonstrated that PXR regulated pathogen-induced inflammation and host defense against Lm infection through modulating the TLR4 pathway. In summary, we discovered an apical role for PXR in regulating innate immunity. In addition, we uncovered a remarkable negative impact of the TLR4 pathway in controlling the quality of the inflammatory response and host defense against a gram-positive bacterial infection.
Immunity | 2014
Madhukumar Venkatesh; Subhajit Mukherjee; Hongwei Wang; Hao Li; Katherine Sun; Alexandre P. Benechet; Zhijuan Qiu; Leigh Maher; Matthew R. Redinbo; Robert S. Phillips; James C. Fleet; Paromita Mukherjee; Alessio Fasano; Jessica Le Ven; Jeremy K. Nicholson; Marc E. Dumas; Kamal M. Khanna; Sridhar Mani
Molecular Endocrinology | 2008
Hongwei Wang; Hao Li; Linda B. Moore; Michael D. L. Johnson; Jodi M. Maglich; Bryan Goodwin; Olivia Ittoop; Bruce Wisely; Katrina L. Creech; Derek J. Parks; Jon L. Collins; Timothy M. Willson; Ganjam V. Kalpana; Madhukumar Venkatesh; Wen Xie; Sool Yeon Cho; John Roboz; Matthew R. Redinbo; John T. Moore; Sridhar Mani