Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Madhuri Hegde is active.

Publication


Featured researches published by Madhuri Hegde.


Genetics in Medicine | 2015

Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

Sue Richards; Nazneen Aziz; Sherri J. Bale; David P. Bick; Soma Das; Julie M. Gastier-Foster; Wayne W. Grody; Madhuri Hegde; Elaine Lyon; Elaine Spector; Karl V. Voelkerding; Heidi L. Rehm

Disclaimer: These ACMG Standards and Guidelines were developed primarily as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory services. Adherence to these standards and guidelines is voluntary and does not necessarily assure a successful medical outcome. These Standards and Guidelines should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the clinical laboratory geneticist should apply his or her own professional judgment to the specific circumstances presented by the individual patient or specimen. Clinical laboratory geneticists are encouraged to document in the patient’s record the rationale for the use of a particular procedure or test, whether or not it is in conformance with these Standards and Guidelines. They also are advised to take notice of the date any particular guideline was adopted and to consider other relevant medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.The American College of Medical Genetics and Genomics (ACMG) previously developed guidance for the interpretation of sequence variants.1 In the past decade, sequencing technology has evolved rapidly with the advent of high-throughput next-generation sequencing. By adopting and leveraging next-generation sequencing, clinical laboratories are now performing an ever-increasing catalogue of genetic testing spanning genotyping, single genes, gene panels, exomes, genomes, transcriptomes, and epigenetic assays for genetic disorders. By virtue of increased complexity, this shift in genetic testing has been accompanied by new challenges in sequence interpretation. In this context the ACMG convened a workgroup in 2013 comprising representatives from the ACMG, the Association for Molecular Pathology (AMP), and the College of American Pathologists to revisit and revise the standards and guidelines for the interpretation of sequence variants. The group consisted of clinical laboratory directors and clinicians. This report represents expert opinion of the workgroup with input from ACMG, AMP, and College of American Pathologists stakeholders. These recommendations primarily apply to the breadth of genetic tests used in clinical laboratories, including genotyping, single genes, panels, exomes, and genomes. This report recommends the use of specific standard terminology—“pathogenic,” “likely pathogenic,” “uncertain significance,” “likely benign,” and “benign”—to describe variants identified in genes that cause Mendelian disorders. Moreover, this recommendation describes a process for classifying variants into these five categories based on criteria using typical types of variant evidence (e.g., population data, computational data, functional data, segregation data). Because of the increased complexity of analysis and interpretation of clinical genetic testing described in this report, the ACMG strongly recommends that clinical molecular genetic testing should be performed in a Clinical Laboratory Improvement Amendments–approved laboratory, with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or the equivalent.Genet Med 17 5, 405–423.


Genetics in Medicine | 2008

ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007

C. Sue Richards; Sherri J. Bale; Daniel B Bellissimo; Soma Das; Wayne W. Grody; Madhuri Hegde; Elaine Lyon; Brian E Ward

ACMG previously developed recommendations for standards for interpretation of sequence variations. We now present the updated revised recommendations. Here, we describe six interpretative categories of sequence variations: (1) sequence variation is previously reported and is a recognized cause of the disorder; (2) sequence variation is previously unreported and is of the type which is expected to cause the disorder; (3) sequence variation is previously unreported and is of the type which may or may not be causative of the disorder; (4) sequence variation is previously unreported and is probably not causative of disease; (5) sequence variation is previously reported and is a recognized neutral variant; and (6) sequence variation is previously not known or expected to be causative of disease, but is found to be associated with a clinical presentation. We emphasize the importance of appropriate reporting of sequence variations using standardized terminology and established databases, and of clearly reporting the limitations of sequence-based testing. We discuss follow-up studies that may be used to ascertain the clinical significance of sequence variations, including the use of additional tools (such as predictive software programs) that may be useful in variant classification. As more information becomes available allowing the interpretation of a new sequence variant, it is recommended that the laboratory amend previous reports and provide updated results to the physician. The ACMG strongly recommends that the clinical and technical validation of sequence variation detection be performed in a CLIA-approved laboratory and interpreted by a board-certified clinical molecular geneticist or equivalent.


Genetics in Medicine | 2013

ACMG clinical laboratory standards for next-generation sequencing

Heidi L. Rehm; Sherri J. Bale; Pinar Bayrak-Toydemir; Jonathan S. Berg; Kerry K. Brown; Joshua L. Deignan; Michael J. Friez; Birgit Funke; Madhuri Hegde; Elaine Lyon

Next-generation sequencing technologies have been and continue to be deployed in clinical laboratories, enabling rapid transformations in genomic medicine. These technologies have reduced the cost of large-scale sequencing by several orders of magnitude, and continuous advances are being made. It is now feasible to analyze an individual’s near-complete exome or genome to assist in the diagnosis of a wide array of clinical scenarios. Next-generation sequencing technologies are also facilitating further advances in therapeutic decision making and disease prediction for at-risk patients. However, with rapid advances come additional challenges involving the clinical validation and use of these constantly evolving technologies and platforms in clinical laboratories. To assist clinical laboratories with the validation of next-generation sequencing methods and platforms, the ongoing monitoring of next-generation sequencing testing to ensure quality results, and the interpretation and reporting of variants found using these technologies, the American College of Medical Genetics and Genomics has developed the following professional standards and guidelines.Genet Med 15 9, 733–747.Genetics in Medicine (2013); 15 9, 733–747. doi:10.1038/gim.2013.92


Nature Biotechnology | 2012

Assuring the quality of next-generation sequencing in clinical laboratory practice

Amy S. Gargis; Lisa Kalman; Meredith W Berry; David P. Bick; David Dimmock; Tina Hambuch; Fei Lu; Elaine Lyon; Karl V. Voelkerding; Barbara A. Zehnbauer; Richa Agarwala; Sarah F. Bennett; Bin Chen; Ephrem L.H. Chin; John Compton; Soma Das; Daniel H. Farkas; Matthew J. Ferber; Birgit Funke; Manohar R. Furtado; Lilia Ganova-Raeva; Ute Geigenmüller; Sandra J Gunselman; Madhuri Hegde; Philip L. F. Johnson; Andrew Kasarskis; Shashikant Kulkarni; Thomas Lenk; Cs Jonathan Liu; Megan Manion

Amy S Gargis, Centers for Disease Control and Prevention Lisa Kalman, Centers for Disease Control and Prevention Meredith W Berry, SeqWright Inc David P Bick, Medical College of Wisconsin David P Dimmock, Medical College of Wisconsin Tina Hambuch, Illumina Clinical Services Fei Lu, SeqWright Inc Elaine Lyon, University of Utah Karl V Voelkerding, University of Utah Barbara Zehnbauer, Emory University


Genetics in Medicine | 2012

Exploring concordance and discordance for return of incidental findings from clinical sequencing

Robert C. Green; Jonathan S. Berg; Gerard T. Berry; Leslie G. Biesecker; David Dimmock; James P. Evans; Wayne W. Grody; Madhuri Hegde; Sarah S. Kalia; Bruce R. Korf; Ian D. Krantz; Amy L. McGuire; David T. Miller; Michael F. Murray; Robert L. Nussbaum; Sharon E. Plon; Heidi L. Rehm; Howard J. Jacob

Purpose:The aim of this study was to explore specific conditions and types of genetic variants that specialists in genetics recommend should be returned as incidental findings in clinical sequencing.Methods:Sixteen specialists in clinical genetics and/or molecular medicine selected variants in 99 common conditions to return to the ordering physician if discovered incidentally through whole-genome sequencing. For most conditions, the specialists independently considered three molecular scenarios for both adults and minor children: a known pathogenic mutation, a truncating variant presumed pathogenic (where other truncating variants are known to be pathogenic), and a missense variant predicted in silico to be pathogenic.Results:On average, for adults and children, respectively, each specialist selected 83.5 and 79.0 conditions or genes of 99 in the known pathogenic mutation categories, 57.0 and 53.5 of 72 in the truncating variant categories, and 33.4 and 29.7 of 72 in the missense variant categories. Concordance in favor of disclosure within the adult/known pathogenic mutation category was 100% for 21 conditions or genes and 80% or higher for 64 conditions or genes.Conclusion:Specialists were highly concordant for the return of findings for 64 conditions or genes if discovered incidentally during whole-exome sequencing or whole-genome sequencing.Genet Med 2012:14(4):405–410


Genetics in Medicine | 2015

Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing

Yuan Xue; Arunkanth Ankala; William R. Wilcox; Madhuri Hegde

Next-generation sequencing is changing the paradigm of clinical genetic testing. Today there are numerous molecular tests available, including single-gene tests, gene panels, and exome sequencing or genome sequencing. As a result, ordering physicians face the conundrum of selecting the best diagnostic tool for their patients with genetic conditions. Single-gene testing is often most appropriate for conditions with distinctive clinical features and minimal locus heterogeneity. Next-generation sequencing–based gene panel testing, which can be complemented with array comparative genomic hybridization and other ancillary methods, provides a comprehensive and feasible approach for heterogeneous disorders. Exome sequencing and genome sequencing have the advantage of being unbiased regarding what set of genes is analyzed, enabling parallel interrogation of most of the genes in the human genome. However, current limitations of next-generation sequencing technology and our variant interpretation capabilities caution us against offering exome sequencing or genome sequencing as either stand-alone or first-choice diagnostic approaches. A growing interest in personalized medicine calls for the application of genome sequencing in clinical diagnostics, but major challenges must be addressed before its full potential can be realized. Here, we propose a testing algorithm to help clinicians opt for the most appropriate molecular diagnostic tool for each scenario.Genet Med 17 6, 444–451.


Human Mutation | 2008

Microarray‐based mutation detection in the dystrophin gene

Madhuri Hegde; Ephrem L.H. Chin; Jennifer G. Mulle; David T. Okou; Stephen T. Warren; Michael E. Zwick

Duchenne and Becker muscular dystrophies (DMD and BMD) are X‐linked recessive neuromuscular disorders caused by mutations in the dystrophin gene affecting approximately 1 in 3,500 males. The human dystrophin gene spans>2,200 kb, or roughly 0.1% of the genome, and is composed of 79 exons. The mutational spectrum of disease‐causing alleles, including exonic copy number variations (CNVs), is complex. Deletions account for approximately 65% of DMD mutations and 85% of BMD mutations. Duplications occur in approximately 6 to 10% of males with either DMD or BMD. The remaining 30 to 35% of mutations consist of small deletions, insertions, point mutations, or splicing mutations, most of which introduce a premature stop codon. Laboratory analysis of dystrophin can be used to confirm a clinical diagnosis of DMD, characterize the type of dystrophin mutation, and perform prenatal testing and carrier testing for females. Current dystrophin diagnostic assays involve a variety of methodologies, including multiplex PCR, Southern blot analysis, multiplex ligation‐dependent probe amplification (MLPA), detection of virtually all mutations‐SSCP (DOVAM‐S), and single condition amplification/internal primer sequencing (SCAIP); however, these methods are time‐consuming, laborious, and do not accurately detect duplication mutations in the dystrophin gene. Furthermore, carrier testing in females is often difficult when a related affected male is unavailable. Here we describe the development, design, validation, and implementation of a high‐resolution comparative genomic hybridization (CGH) microarray‐based approach capable of accurately detecting both deletions and duplications in the dystrophin gene. This assay can be readily adopted by clinical molecular testing laboratories and represents a rapid, cost‐effective approach for screening a large gene, such as dystrophin. Hum Mutat 0, 1–9, 2008.


American Journal of Human Genetics | 2012

Mutations in the Glycosylphosphatidylinositol Gene PIGL Cause CHIME Syndrome

Bobby G. Ng; Karl Hackmann; Melanie A. Jones; Alexey Eroshkin; Ping He; Roy Wiliams; Shruti Bhide; Vincent Cantagrel; Joseph G. Gleeson; Amy S. Paller; Rhonda E. Schnur; Sigrid Tinschert; Janice Zunich; Madhuri Hegde; Hudson H. Freeze

CHIME syndrome is characterized by colobomas, heart defects, ichthyosiform dermatosis, mental retardation (intellectual disability), and ear anomalies, including conductive hearing loss. Whole-exome sequencing on five previously reported cases identified PIGL, the de-N-acetylase required for glycosylphosphatidylinositol (GPI) anchor formation, as a strong candidate. Furthermore, cell lines derived from these cases had significantly reduced levels of the two GPI anchor markers, CD59 and a GPI-binding toxin, aerolysin (FLAER), confirming the pathogenicity of the mutations.


Human Molecular Genetics | 2013

Mutations in FKBP10, which result in Bruck syndrome and recessive forms of osteogenesis imperfecta, inhibit the hydroxylation of telopeptide lysines in bone collagen

Ulrike Schwarze; Tim Cundy; Shawna M. Pyott; Helena E. Christiansen; Madhuri Hegde; Ruud A. Bank; Gerard Pals; Arunkanth Ankala; Karen N. Conneely; Laurie H. Seaver; Suzanne Yandow; Ellen M. Raney; Dusica Babovic-Vuksanovic; Joan M. Stoler; Ziva Ben-Neriah; Reeval Segel; Sari Lieberman; Liesbeth Siderius; Aida Al-Aqeel; Mark C. Hannibal; Louanne Hudgins; Elizabeth McPherson; Michele Clemens; Michael D. Sussman; Robert D. Steiner; John D. Mahan; Rosemarie Smith; Kwame Anyane-Yeboa; Julia Wynn; Karen Chong

Although biallelic mutations in non-collagen genes account for <10% of individuals with osteogenesis imperfecta, the characterization of these genes has identified new pathways and potential interventions that could benefit even those with mutations in type I collagen genes. We identified mutations in FKBP10, which encodes the 65 kDa prolyl cis-trans isomerase, FKBP65, in 38 members of 21 families with OI. These include 10 families from the Samoan Islands who share a founder mutation. Of the mutations, three are missense; the remainder either introduce premature termination codons or create frameshifts both of which result in mRNA instability. In four families missense mutations result in loss of most of the protein. The clinical effects of these mutations are short stature, a high incidence of joint contractures at birth and progressive scoliosis and fractures, but there is remarkable variability in phenotype even within families. The loss of the activity of FKBP65 has several effects: type I procollagen secretion is slightly delayed, the stabilization of the intact trimer is incomplete and there is diminished hydroxylation of the telopeptide lysyl residues involved in intermolecular cross-link formation in bone. The phenotype overlaps with that seen with mutations in PLOD2 (Bruck syndrome II), which encodes LH2, the enzyme that hydroxylates the telopeptide lysyl residues. These findings define a set of genes, FKBP10, PLOD2 and SERPINH1, that act during procollagen maturation to contribute to molecular stability and post-translational modification of type I procollagen, without which bone mass and quality are abnormal and fractures and contractures result.


Genetics in Medicine | 2014

Mutations in NGLY1 cause an inherited disorder of the endoplasmic reticulum-associated degradation pathway

Gregory M. Enns; Shashi; Matthew N. Bainbridge; Michael J. Gambello; Farah R. Zahir; T Bast; R Crimian; Kelly Schoch; Julia Platt; Rachel Cox; Jonathan A. Bernstein; M Scavina; Rs Walter; A Bibb; Matthew C. Jones; Madhuri Hegde; Brett H. Graham; Anna C. Need; A Oviedo; Christian P. Schaaf; Sean M. Boyle; Atul J. Butte; Ron Chen; Michael J. Clark; Rajini Haraksingh; Tina M. Cowan; Ping He; Sylvie Langlois; Huda Y. Zoghbi; Michael Snyder

Purpose:The endoplasmic reticulum–associated degradation pathway is responsible for the translocation of misfolded proteins across the endoplasmic reticulum membrane into the cytosol for subsequent degradation by the proteasome. To define the phenotype associated with a novel inherited disorder of cytosolic endoplasmic reticulum–associated degradation pathway dysfunction, we studied a series of eight patients with deficiency of N-glycanase 1.Methods:Whole-genome, whole-exome, or standard Sanger sequencing techniques were employed. Retrospective chart reviews were performed in order to obtain clinical data.Results:All patients had global developmental delay, a movement disorder, and hypotonia. Other common findings included hypolacrima or alacrima (7/8), elevated liver transaminases (6/7), microcephaly (6/8), diminished reflexes (6/8), hepatocyte cytoplasmic storage material or vacuolization (5/6), and seizures (4/8). The nonsense mutation c.1201A>T (p.R401X) was the most common deleterious allele.Conclusion:NGLY1 deficiency is a novel autosomal recessive disorder of the endoplasmic reticulum–associated degradation pathway associated with neurological dysfunction, abnormal tear production, and liver disease. The majority of patients detected to date carry a specific nonsense mutation that appears to be associated with severe disease. The phenotypic spectrum is likely to enlarge as cases with a broader range of mutations are detected.Genet Med 16 10, 751–758.

Collaboration


Dive into the Madhuri Hegde's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge