Madhurima Bakshi
University of Calcutta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Madhurima Bakshi.
Marine Pollution Bulletin | 2016
Somdeep Ghosh; S. S. Ram; Madhurima Bakshi; Anindita Chakraborty; Mathummal Sudarshan; Punarbasu Chaudhuri
Hooghly Estuary along with the Sunderban mangroves forms one of the most diverse ecosystems in the world. We investigated the vertical and horizontal distribution of elements at nine sampling locations in this estuary for assessing the degree of elemental contamination. The elemental concentrations were analyzed by an Energy Dispersive X-ray Flurosence spectrometer (EDXRF). A higher enrichment factor (EF) value of trace elements (V, Cr, Mn, Fe, Ni, Cu and Zn) is evident considering all the sampling locations. Geo-accumulation index (Igeo) values of all the sampling locations and core depth reveals Cr and Cu are under Igeo Class I level of contamination. The value of the pollution load index (PLI) varies between 0.94-1.65 with maximum at Chemaguri and minimum at Haldi Estuary and Petuaghat. The overall variation in elemental concentration may be due to differential discharge pattern of storm water and agricultural run-off, industrial effluent and domestic sewage.
Environmental Geochemistry and Health | 2018
Somdeep Ghosh; Madhurima Bakshi; Alok Kumar; Al. Ramanathan; Jayanta Kumar Biswas; Subarna Bhattacharyya; Punarbasu Chaudhuri; Sabry M. Shaheen; Jörg Rinklebe
Hooghly–Matla estuarine system along with the Sundarbans mangroves forms one of the most diverse and vulnerable ecosystems in the world. We have investigated the distribution of Co, Cr, Cu, Fe and Zn along with sediment properties at six locations [Shamshernagar (S1), Kumirmari (S2 and S3), Petuaghat (S4), Tapoban (S5) and Chemaguri (S6)] in the Hooghly estuary and reclaimed islands of the Sundarbans for assessing the degree of contamination and potential ecological risks. Enrichment factor values (0.9–21.6) show enrichment of Co, Cu and Zn in the intertidal sediments considering all sampling locations and depth profiles. Geo-accumulation index values irrespective of sampling locations and depth revealed that Co and Cu are under class II and class III level indicating a moderate contamination of sediments. The pollution load index was higher than unity (1.6–2.1), and Co and Cu were the major contributors to the sediment pollution followed by Zn, Cr and Fe with the minimum values at S1 and the maximum values at S5. The sediments of the Hooghly–Matla estuarine region (S4, S5 and S6) showed considerable ecological risks, when compared with effect range low/effect range median and threshold effect level/probable effect level values. The variation in the distribution of the studied elements may be due to variation in discharge pattern and exposure to industrial effluent and domestic sewage, storm water and agricultural run-off and fluvial dynamics of the region. The study illuminates the necessity for the proper management of vulnerable coastal estuarine ecosystem by stringent pollution control measures along with regular monitoring and checking program.
Environmental Monitoring and Assessment | 2017
Madhurima Bakshi; S. S. Ram; Somdeep Ghosh; Anindita Chakraborty; Mathummal Sudarshan; Punarbasu Chaudhuri
This work describes the micro-spatial variation of elemental distribution in estuarine sediment and bioaccumulation of those elements in different mangrove species of the Indian Sundarbans. The potential ecological risk due to such elemental load on this mangrove-dominated habitat is also discussed. The concentrations of elements in mangrove leaves and sediments were determined using energy-dispersive X-ray fluorescence spectroscopy. Sediment quality and potential ecological risks were assessed from the calculated indices. Our data reflects higher concentration of elements, e.g., Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb, in the sediment, as compared to that reported by earlier workers. Biological concentration factors for K, Ca, Mn, Fe, Cu, and Zn in different mangroves indicated gradual elemental bioaccumulation in leaf tissues (0.002–1.442). Significant variation was observed for elements, e.g., Ni, Mn, and Ca, in the sediments of all the sites, whereas in the plants, significant variation was found for P, S, Cl, K, Ca, Mn, Fe, Cu, and Zn. This was mostly due to the differences in uptake and accumulation potential of the plants. Various sediment quality indices suggested the surface sediments to be moderately contaminated and suffering from progressive deterioration. Cu, Cr, Zn, Mn, and Ni showed higher enrichment factors (0.658–1.469), contamination factors (1.02–2.7), and geo-accumulation index (0.043–0.846) values. The potential ecological risk index values considering Cu, Cr, Pb, and Zn were found to be within “low ecological risk” category (20.04–24.01). However, Cr and Ni in the Sundarban mangroves exceeded the effect range low and probable effect level limits. Strong correlation of Zn with Fe and K was observed, reflecting their similar transportation and accumulation process in both sediment and plant systems. The plant–sediment elemental correlation was found to be highly non-linear, suggesting role of some physiological and edaphic factors in the accumulation process. Overall, the study of micro-spatial distribution of elements can act as a useful tool for determining health of estuarine ecosystem.
Marine Pollution Bulletin | 2018
Madhurima Bakshi; Somdeep Ghosh; Debarati Chakraborty; Sugata Hazra; Punarbasu Chaudhuri
Spatial distribution of potentially toxic metals (PTMs) and their accumulation in mangrove Avicennia officinalis L. were studied along 8 locations in and around Sundarban mangrove wetland, India. Among 8 locations, S3 (Chemaguri) and S5 (Ghushighata) showed higher concentration of PTMs (Cd, Cr, Cu, Ni, Pb, Zn) characterized by higher enrichment factors (3.45-10.03), geo-accumulation indices (0.04-1.22), contamination factors (1.14-3.51) and pollution load indices (1.3-1.45) indicating progressive deterioration of estuarine quality and considerable ecotoxicological risk. Metal concentration in A. officinalis leaves showed significant correlation with sediment metals implying elevated level of bioaccumulation. Significant statistical correlation between photosynthetic pigments (Chlorophyll a, Chlorophyll b), antioxidant response (free radical scavenging and reducing ability) and stress enzymatic activity (Peroxidase, Catalase, Super-oxide dismutase) of A. officinalis with increasing metal concentration in the contaminated locations reflects active detoxification mechanism of the plant. The study indicates the potentiality of biomonitoring metal pollution using studied biochemical markers in mangrove habitats.
Environmental Geochemistry and Health | 2018
Madhurima Bakshi; Somdeep Ghosh; S. S. Ram; Mathummal Sudarshan; Anindita Chakraborty; Jayanta Kumar Biswas; Sabry M. Shaheen; Nabeel Khan Niazi; Jörg Rinklebe; Punarbasu Chaudhuri
Mangroves have wide applications in traditional medicines due to their several therapeutic properties. Potentially toxic elements (PTEs), in mangrove habitats, need serious concern because of their toxicity, bioaccumulation capacity and ecotoxicological risks. In the current study, we aimed to examine sediment quality and bioaccumulation of PTEs in a mangrove-dominated habitat of Sundarban, India, and their relation with antimicrobial property of ten mangrove species of the region. Antimicrobial activity of different solvent fractions of mangrove leaves was assessed against seven microorganisms. The highest antimicrobial activity was detected in ethyl acetate and acetone-extracted fractions of Avicennia alba. Various sediment quality indices revealed progressively deteriorating nature of surface sediment having moderate contamination, however, low ecotoxicological risk. The accumulation factors (AF) for different PTEs indicate a gradual metal bioaccumulation in leaf tissue. Antimicrobial activities indicated both positive and negative correlations with manganese (Mn), copper (Cu), iron (Fe) and zinc (Zn) concentrations of mangrove species. Concentration of Mn showed a significant correlation with almost all the fractions, whereas Cu had correlation with ethyl acetate, acetone and methanol fractions (P < 0.05). The AF of Mn and Cu exhibited correlation with antimicrobial activities of acetone and methanol fractions, whereas Fe and Zn had correlation with hexane and ethyl acetate fractions. Overall, Mn, Fe, Cu and Zn concentrations of Acanthus ilicifolius and Avicennia alba leaves and in the surface sediments demonstrated the strongest association (P < 0.05) with their antimicrobial activity as also depicted in correlation and cluster analysis studies. Thus, this study will help to establish a link between the PTEs in mangrove ecosystem with their bioactivity.
International Letters of Natural Sciences | 2014
Tanmoy Kumar Dey; Priya Banerjee; Madhurima Bakshi; Abhirupa Kar; Somdeep Ghosh
Ecotoxicology | 2014
Priya Banerjee; Sandeep Sarkar; Tanmoy Kumar Dey; Madhurima Bakshi; Snehasikta Swarnakar; Aniruddha Mukhopadhayay; Sourja Ghosh
International journal of pharma and bio sciences | 2014
Madhurima Bakshi; Punarbasu Chaudhuri
Journal of Bionanoscience | 2015
Madhurima Bakshi; Somdeep Ghosh; Punarbasu Chaudhuri
Microporous and Mesoporous Materials | 2018
Ajita Jindal; Subhavna Juneja; Madhurima Bakshi; Punarbasu Chaudhuri; Jaydeep Bhattacharya