Maduraiveeran Govindhan
Lakehead University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maduraiveeran Govindhan.
Biosensors and Bioelectronics | 2015
Maduraiveeran Govindhan; Mona Amiri; Aicheng Chen
Here we report on a facile, rapid, sensitive, selective and highly stable electrochemical sensing platform for β-nicotinamide adenine dinucleotide (NADH) based on uncapped Au nanoparticle/reduced graphene oxide (rGO) nanocomposites without the aid of any redox mediators and enzymes. The Au nanoparticle/rGO composite sensing platform was directly formed on a glassy carbon electrode through an in situ electrochemical reduction of GO and Au(3+) with a 100% usage of the precursors. The as-prepared Au nanoparticle/rGO composites demonstrated excellent direct electrocatalytic oxidation toward NADH, providing a large electrochemical active surface area as well as a favorable environment for electron transfer from NADH to the electrode via the enhanced mobility of charge carriers. The Au nanoparticle/rGO composites offered a ~2.3 times higher electrocatalytic current density with a negative shift of 112mV, in comparison to Au nanoparticles. The sensor developed in this study displayed a high sensitivity of 0.916µA/µMcm(2) and a wide linear range of from 50nM to 500µM with a limit of detection of 1.13nM (S/N=3). The interferences from the common interferents such as glutathione, glucose, ascorbic acid and quanine were negligible. The prepared sensor was further tested for the determination of NADH in human urine samples, showing the Au nanoparticle/rGO nanocomposites simultaneously formed by one-step electrochemical reduction have promising biomedical applications.
RSC Advances | 2014
Maduraiveeran Govindhan; Bal-Ram Adhikari; Aicheng Chen
Owing to the high toxicity and detrimental effects of chemical contaminants to human health and the environment, public concerns over chemical contaminants in the environment and in foods have been mounting drastically. It is therefore significant to monitor contaminants via portable sensing devices, which encompass the demands of being low-cost and the potential for online environmental monitoring and food safety applications. This review will assess various concepts and recent advancements in design and the application of state-of-the-art nanomaterials through the incorporation of carbon nanomaterials, metallic and metallic oxide nanoparticles, titanium dioxide nanotubes, and dendrimers toward the development of electrochemical sensors for the detection of chemical contaminants in the environment and in foods. The development of nanomaterials based sensors facilitated by recent advances is having a major impact on sensor industries for environmental and food safety monitoring. Electrochemical sensing strategies have spurred intense interest in the research community as they have the capacity to serve as ideal sensor technology candidates, having such features as rapid response, robustness, high sensitivity and selectivity, low cost, miniaturization, and the potential for real-time monitoring. Nanomaterials have strong potential for increasing the competitiveness of new sensors for environmental monitoring and food safety applications through the combination of efficacious, yet simple fabrication techniques in the development of critical nanometric interfaces, and the optimization of their design and performance. Opportunities and future considerations for the use of nanomaterials in electrochemical sensors for producing advanced environmental and food sensing devices will also be addressed.
Sensors | 2015
Bal-Ram Adhikari; Maduraiveeran Govindhan; Aicheng Chen
Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs), reduced graphene oxide (rGO), SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH), and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics.
Nanomaterials | 2016
Maduraiveeran Govindhan; Zhonggang Liu; Aicheng Chen
The extensive physiological and regulatory roles of nitric oxide (NO) have spurred the development of NO sensors, which are of critical importance in neuroscience and various medical applications. The development of electrochemical NO sensors is of significant importance, and has garnered a tremendous amount of attention due to their high sensitivity and selectivity, rapid response, low cost, miniaturization, and the possibility of real-time monitoring. Nanostructured platinum (Pt)-based materials have attracted considerable interest regarding their use in the design of electrochemical sensors for the detection of NO, due to their unique properties and the potential for new and innovative applications. This review focuses primarily on advances and insights into the utilization of nanostructured Pt-based electrode materials, such as nanoporous Pt, Pt and PtAu nanoparticles, PtAu nanoparticle/reduced graphene oxide (rGO), and PtW nanoparticle/rGO-ionic liquid (IL) nanocomposites, for the detection of NO. The design, fabrication, characterization, and integration of electrochemical NO sensing performance, selectivity, and durability are addressed. The attractive electrochemical properties of Pt-based nanomaterials have great potential for increasing the competitiveness of these new sensors and open up new opportunities in the creation of novel NO-sensing technologies for biological and medical applications.
Journal of Power Sources | 2015
Maduraiveeran Govindhan; Aicheng Chen
Electrochimica Acta | 2015
Bal-Ram Adhikari; Maduraiveeran Govindhan; Aicheng Chen
Nanoscale | 2016
Maduraiveeran Govindhan; Brennan Mao; Aicheng Chen
Electroanalysis | 2015
Maduraiveeran Govindhan; Todd Lafleur; Bal-Ram Adhikari; Aicheng Chen
Mikrochimica Acta | 2016
Maduraiveeran Govindhan; Aicheng Chen
ChemElectroChem | 2015
Walaa Alammari; Maduraiveeran Govindhan; Aicheng Chen