Maeve A. Caldwell
University of Bristol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maeve A. Caldwell.
Journal of Neuroscience Methods | 1998
Clive N. Svendsen; M. G. ter Borg; Richard J. E. Armstrong; Anne Elizabeth Rosser; Siddharthan Chandran; Thor Ostenfeld; Maeve A. Caldwell
A reliable source of human neural tissue would be of immense practical value to both neuroscientists and clinical neural transplantation trials. In this study, human precursor cells were isolated from the developing human cortex and, in the presence of both epidermal and fibroblast growth factor-2, grew in culture as sphere shaped clusters. Using traditional passaging techniques and culture mediums the rate of growth was extremely slow, and only a 12-fold expansion in total cell number could be achieved. However, when intact spheres were sectioned into quarters, rather than mechanically dissociated, cell cell contacts were maintained and cellular trauma minimised which permitted the rapid and continual growth of each individual quarter. Using this method we have achieved a 1.5 million-fold increase in precursor cell number over a period of less than 200 days. Upon differentiation by exposure to a substrate, cells migrated out from the spheres and formed a monolayer of astrocytes and neurons. No oligodendrocytes were found to develop from these human neural precursor cells at late passages when whole spheres were differentiated. This simple and novel culture method allows the rapid expansion of large numbers of non-transformed human neural precursor cells which may be of use in drug discovery, ex vivo gene therapy and clinical neural transplantation.
Experimental Neurology | 1997
Clive N. Svendsen; Maeve A. Caldwell; Jinkun Shen; Melanie ter Borg; Anne Elizabeth Rosser; Pam Tyers; Soverin Karmiol; Stephen B. Dunnett
Progenitor cells were isolated from the developing human central nervous system (CNS), induced to divide using a combination of epidermal growth factor and fibroblast growth factor-2, and then transplanted into the striatum of adult rats with unilateral dopaminergic lesions. Large grafts were found at 2 weeks survival which contained many undifferentiated cells, some of which were migrating into the host striatum. However, by 20 weeks survival, only a thin strip of cells remained at the graft core while a large number of migrating astrocytes labeled with a human-specific antibody could be seen throughout the striatum. Fully differentiated graft-derived neurons, also labeled with a human-specific antibody, were seen close to the transplant site in some animals. A number of these neurons expressed tyrosine hydroxylase and were sufficient to partially ameliorate lesion-induced behavioral deficits in two animals. These results show that expanded populations of human CNS progenitor cells maintained in a proliferative state in culture can migrate and differentiate into both neurons and astrocytes following intracerebral grafting. As such these cells may have potential for development as an alternative source of tissue for neural transplantation in degenerative diseases.
Nature Biotechnology | 2001
Maeve A. Caldwell; Xiaoling He; Neil Wilkie; Scott J. Pollack; George Marshall; Keith A. Wafford; Clive N. Svendsen
Cells isolated from the embryonic, neonatal, and adult rodent central nervous system divide in response to epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF-2), while retaining the ability to differentiate into neurons and glia. These cultures can be grown in aggregates termed neurospheres, which contain a heterogeneous mix of both multipotent stem cells and more restricted progenitor populations. Neurospheres can also be generated from the embryonic human brain and in some cases have been expanded for extended periods of time in culture. However, the mechanisms controlling the number of neurons generated from human neurospheres are poorly understood. Here we show that maintaining cell–cell contact during the differentiation stage, in combination with growth factor administration, can increase the number of neurons generated under serum-free conditions from 8% to >60%. Neurotrophic factors 3 and 4 (NT3, NT4) and platelet-derived growth factor (PDGF) were the most potent, and acted by increasing neuronal survival rather than inducing neuronal phenotype. Following differentiation, the neurons could survive dissociation and either replating or transplantation into the adult rat brain. This experimental system provides a practically limitless supply of enriched, non-genetically transformed neurons. These should be useful for both neuroactive drug screening in vitro and possibly cell therapy for neurodegenerative diseases.
Experimental Neurology | 2000
Thor Ostenfeld; Maeve A. Caldwell; Karen R. Prowse; Maarten H.K. Linskens; Eric Jauniaux; Clive N. Svendsen
Worldwideattention is presently focused on proliferating populations of neural precursor cells as an in vitro source of tissue for neural transplantation and brain repair. However, successful neuroreconstruction is contingent upon their capacity to integrate within the host CNS and the absence of tumorigenesis. Here we show that human neural precursor cells express very low levels of telomerase at early passages (less than 20 population doublings), but that this decreases to undetectable levels at later passages. In contrast, rodent neural precursors express high levels of telomerase at both early and late passages. The human neural precursors also have telomeres (approximately 12 kbp) significantly shorter than those of their rodent counterparts (approximately 40 kbp). Human neural precursors were then expanded 100-fold prior to intrastriatal transplantation in a rodent model of Parkinsons disease. To establish the effects of implanted cell number on survival and integration, precursors were transplanted at either 200,000, 1 million, or 2 million cells per animal. Interestingly, the smaller transplants were more likely to extend neuronal fibers and less likely to provoke immune rejection than the largest transplants in this xenograft model. Cellular proliferation continued immediately post-transplantation, but by 20 weeks there were virtually no dividing cells within any of the grafts. In contrast, fiber outgrowth increased gradually over time and often occupied the entire striatum at 20 weeks postgrafting. Transient expression of tyrosine hydroxylase-positive cells within the grafts was found in some animals, but this was not sustained at 20 weeks and had no functional effects. For Parkinsons disease, the principal aim now is to induce the dopaminergic phenotype in these cells prior to transplantation. However, given the relative safety profile for these human cells and their capacity to extend fibers into the adult rodent brain, they may provide the ideal basis for the repair of other lesions of the CNS where extensive axonal outgrowth is required.
Developmental Brain Research | 2002
Thor Ostenfeld; Etienne Joly; Yu-Tzu Tai; Anna Peters; Maeve A. Caldwell; Eric Jauniaux; Clive N. Svendsen
Neural precursor cells were isolated from various regions of the developing rat and human brain and grown in culture as aggregates termed neurospheres. We asked whether cells within human and rodent neurospheres are identical, or whether they have species specific characteristics or differences based on their region of origin. Under our culture conditions, rodent neurospheres isolated from the cortex (ctxNS) and striatum (strNS) grew faster than those from the mesencephalon (mesNS), but stopped growing after only eight to ten population doublings. In contrast, human neurospheres under identical culture conditions, continued to grow for over 40 population doublings. Following migration and differentiation of both rodent and human cultures, ctxNS and strNS generated high numbers of small neurons whereas mesNS generated small numbers of large neurons with many long fibres. Only very rare neurons from mesNS expressed dopaminergic markers, and thus may require further signals to fully mature. While the rat neurospheres generated high numbers of oligodendrocytes, very few were found to develop from human neurospheres from any region after a few weeks of passaging. FACS analysis revealed a unique population of smaller cells within human strNS and ctxNS, which appeared to be neuronal progenitors. However, large cells within neurospheres were capable of generating these small neuronal progenitors following further proliferation. Together, our data show that rat and human neurospheres have unique characteristics with regard to growth and differentiation, and that the majority of precursor cells within neurospheres are regionally specified to generate set numbers of neurons. These findings have important implications for understanding the nature of proliferating neural precursors isolated from the developing CNS, and their potential for brain repair.
Brain Pathology | 1999
Clive N. Svendsen; Maeve A. Caldwell; Thor Ostenfeld
Neural stem cells, with the capacity to self renew and produce the major cell types of the brain, exist in the developing and adult rodent central nervous system (CNS). Their exact function and distribution is currently being assessed, but they represent an interesting cell population, which may be used to study factors important for the differentiation of neurons, astrocytes and oligodendrocytes. Recent evidence suggests that neural stem cells may also exist in both the developing and adult human CNS. These cells can be grown in vitro for long periods of time while retaining the potential to differentiate into nervous tissue. Significantly, many neurons can be produced from a limited number of starting cells, raising the possibility of cell replacement therapy for a wide range of neurological disorders. This review summarises this fascinating and growing field of neurobiology, with a particular focus on human tissues.
The Lancet | 2002
Sabine Bahn; Michael L. Mimmack; Margaret Ryan; Maeve A. Caldwell; Eric Jauniaux; Michael Starkey; Clive N. Svendsen; Piers C. Emson
BACKGROUND Identification of genes and characterisation of their function is an essential step towards understanding complex pathophysiological abnormalities in Downs syndrome. We did a study to investigate abnormalities in gene expression in human neuronal stem cells and progenitor cells from Downs syndrome and control post-mortem human fetal tissue. METHODS Indexing-based differential display PCR was done on neuronal precursor cells derived from the cortex of a fetus with Downs syndrome, and findings were compared with those of two control samples. Findings were validated against neurosphere preparations from three independent Downs syndrome fetuses and five independent controls by real-time quantitative PCR. FINDINGS Results of differential display PCR analysis showed that SCG10--a neuron--specific growth-associated protein regulated by the neuron-restrictive silencer factor REST-was almost undetectable in the Downs syndrome sample. This finding was validated by real-time PCR. We also found that other genes regulated by the REST transcription factor were selectively repressed, whereas non-REST-regulated genes with similar functions were unaffected. Changes in expression of several key developmental genes in the Downs syndrome stem-cell and progenitor-cell pool correlated with striking changes in neuron morphology after differentiation. INTERPRETATION Our findings suggest a link between dysregulation of the REST transcription factor and some of the neurological deficits seen in Downs syndrome. Experimental REST downregulation has been shown to trigger apoptosis, which could account for the striking and selective loss of neurons in the differentiated Downs syndrome cell preparations.
Journal of Neurochemistry | 2004
Lynda S. Wright; Maeve A. Caldwell; Kyle Wallace; Jeffrey A. Johnson; Clive N. Svendsen
Human neural precursor cells grown in culture provide a source of tissue for drug screening, developmental studies and cell therapy. However, mechanisms underlying their growth and differentiation are poorly understood. We show that epidermal growth factor (EGF) responsive precursors derived from the developing human cortex undergo senescence after 30–40 population doublings. Leukemia inhibitory factor (LIF) increased overall expansion rates, prevented senescence and allowed the growth of a long‐term self renewing neural stem cell (ltNSCctx) for up to 110 population doublings. We established basal gene expression in ltNSCctx using Affymetrix oligonucleotide microarrays that delineated specific members of important growth factor and signaling families consistently expressed across three separate lines. Following LIF withdrawal, 200 genes showed significant decreases. Protein analysis confirmed LIF‐regulated expression of glial fibrillary acidic protein, CD44, and major histocompatibility complex I. This study provides the first molecular profile of human ltNSCctx cultures capable of long‐term self renewal, and reveals specific sets of genes that are directly or indirectly regulated by LIF.
Nucleic Acids Research | 2009
Youn Bok Lee; Ioannis Bantounas; Do-Young Lee; Leonidas A. Phylactou; Maeve A. Caldwell; James B. Uney
MicroRNAs are known to regulate developmental processes but their mechanism of regulation remains largely uncharacterized. We show the transcription factor Twist-1 drives the expression of a 7.9-kb noncoding RNA transcript (from the Dynamin-3 gene intron) that encodes a miR-199a and miR-214 cluster. We also show that knocking down Twist-1 with shRNAs decreased miR-199a/214 levels and that Twist-1 bound an E-Box promoter motif to developmentally regulate the expression of these miRNAs. The expression of HIF-1 (known to mediate Twist-1 transcription), miR-199a and miR-214 was maximal at E12.5 and the miRNAs were expressed specifically in mouse cerebellum, midbrain, nasal process and fore- and hindlimb buds. This study shows the expression of the miR199a/214 cluster is controlled by Twist-1 via an E-Box promoter element and supports a role for these miRNAs as novel intermediates in the pathways controlling the development of specific neural cell populations.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Gráinne C. O'Keeffe; Pam Tyers; Dag Aarsland; Jeffrey W. Dalley; Roger A. Barker; Maeve A. Caldwell
A reduction in dopaminergic innervation of the subventricular zone (SVZ) is responsible for the impaired proliferation of its resident precursor cells in this region in Parkinsons disease (PD). Here, we show that this effect involves EGF, but not FGF2. In particular, we demonstrate that dopamine increases the proliferation of SVZ-derived cells by releasing EGF in a PKC-dependent manner in vitro and that activation of the EGF receptor (EGFR) is required for this effect. We also show that dopamine selectively expands the GFAP+ multipotent stem cell population in vitro by promoting their self-renewal. Furthermore, in vivo dopamine depletion leads to a decrease in precursor cell proliferation in the SVZ concomitant with a reduction in local EGF production, which is reversed through the administration of the dopamine precursor levodopa (l-DOPA). Finally, we show that EGFR+ cells are depleted in the SVZ of human PD patients compared with age-matched controls. We have therefore demonstrated a unique role for EGF as a mediator of dopamine-induced precursor cell proliferation in the SVZ, which has potential implications for future therapies in PD.