Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maeve C. Lohan is active.

Publication


Featured researches published by Maeve C. Lohan.


Reference Module in Earth Systems and Environmental Sciences#R##N#Treatise on Geochemistry (Second Edition) | 2013

Controls of Trace Metals in Seawater

Kenneth W. Bruland; R. Middag; Maeve C. Lohan

This chapter presents a general overview of the major controls of trace metals in seawater, developed from the extensive research on trace metals over the last few decades. The reader should be given a first-order understanding and insight into trace metal biogeochemistry in the oceans, rather than presented with a comprehensive review of the distribution of each trace metal. Each of the trace metals discussed will undoubtedly prove to have unique characteristics and subtle differences from this version, yet the comparison with these characteristics will serve as a good springboard to a more complete understanding.


Eos, Transactions American Geophysical Union | 2007

Developing standards for dissolved iron in seawater

Kenneth S. Johnson; Edward A. Boyle; Kenneth W. Bruland; Kenneth H. Coale; Christopher I. Measures; James W. Moffett; Ana M. Aguilar-Islas; Katherine A. Barbeau; Bridget A. Bergquist; Andrew R. Bowie; Kristen N. Buck; Yihua Cai; Zanna Chase; Jay T. Cullen; Takashi Doi; Virginia A. Elrod; Steve E. Fitzwater; Michael Gordon; Andrew L. King; Patrick Laan; Luis Laglera-Baquer; William M. Landing; Maeve C. Lohan; Jeffrey Mendez; Angela Milne; Hajime Obata; Lia Ossiander; Joshua N. Plant; Géraldine Sarthou; Peter N. Sedwick

In nearly a dozen open- ocean fertilization experiments conducted by more than 100 researchers from nearly 20 countries, adding iron at the sea surface has led to distinct increases in photosynthesis rates and biomass. These experiments confirmed the hypothesis proposed by the late John Martin [Martin, 1990] that dissolved iron concentration is a key variable that controls phytoplankton processes in ocean surface waters. However, the measurement of dissolved iron concentration in seawater remains a difficult task [Bruland and Rue, 2001] with significant interlaboratory differences apparent at times. The availability of a seawater reference solution with well- known dissolved iron (Fe) concentrations similar to open- ocean values, which could be used for the calibration of equipment or other tasks, would greatly alleviate these problems [National Research Council (NRC), 2002]. The Sampling and Analysis of Fe (SAFe) cruise was staged from Honolulu, Hawaii, to San Diego, Calif., between 15 October and 8 November 2004 to collect data and samples that were later used to provide this reference material. Here we provide a brief report on the cruise results, which have produced a tenfold improvement in the variability of iron measurements, and announce the availability of the SAFe dissolved Fe in seawater standards.


Journal of Geophysical Research | 2010

River Influences on Shelf Ecosystems: Introduction and synthesis

Barbara M. Hickey; Raphael M. Kudela; Jonathan D. Nash; Kenneth W. Bruland; William T. Peterson; Parker MacCready; Evelyn J. Lessard; David A. Jay; Neil S. Banas; António M. Baptista; Edward P. Dever; P. M. Kosro; L. K. Kilcher; Alexander R. Horner-Devine; Edward D. Zaron; Ryan M. McCabe; Jay O. Peterson; Philip M. Orton; Jiayi Pan; Maeve C. Lohan

[1] River Influences on Shelf Ecosystems (RISE) is the first comprehensive interdisciplinary study of the rates and dynamics governing the mixing of river and coastal waters in an eastern boundary current system, as well as the effects of the resultant plume on phytoplankton standing stocks, growth and grazing rates, and community structure. The RISE Special Volume presents results deduced from four field studies and two different numerical model applications, including an ecosystem model, on the buoyant plume originating from the Columbia River. This introductory paper provides background information on variability during RISE field efforts as well as a synthesis of results, with particular attention to the questions and hypotheses that motivated this research. RISE studies have shown that the maximum mixing of Columbia River and ocean water occurs primarily near plume liftoff inside the estuary and in the near field of the plume. Most plume nitrate originates from upwelled shelf water, and plume phytoplankton species are typically the same as those found in the adjacent coastal ocean. River-supplied nitrate can help maintain the ecosystem during periods of delayed upwelling. The plume inhibits iron limitation, but nitrate limitation is observed in aging plumes. The plume also has significant effects on rates of primary productivity and growth (higher in new plume water) and microzooplankton grazing (lower in the plume near field and north of the river mouth); macrozooplankton concentration (enhanced at plume fronts); offshelf chlorophyll export; as well as the development of a chlorophyll ‘‘shadow zone’’ off northern Oregon.


The ISME Journal | 2011

Nitrogen fixation and nitrogenase (nifH) expression in tropical waters of the eastern North Atlantic

Kendra A. Turk; Andrew P. Rees; Jonathan P. Zehr; Nicole Pereira; Paul Swift; Rachel Shelley; Maeve C. Lohan; E. Malcolm S. Woodward; Jack A. Gilbert

Expression of nifH in 28 surface water samples collected during fall 2007 from six stations in the vicinity of the Cape Verde Islands (north-east Atlantic) was examined using reverse transcription-polymerase chain reaction (RT-PCR)-based clone libraries and quantitative RT-PCR (RT-qPCR) analysis of seven diazotrophic phylotypes. Biological nitrogen fixation (BNF) rates and nutrient concentrations were determined for these stations, which were selected based on a range in surface chlorophyll concentrations to target a gradient of primary productivity. BNF rates greater than 6 nmolN l−1 h−1 were measured at two of the near-shore stations where high concentrations of Fe and PO43− were also measured. Six hundred and five nifH transcripts were amplified by RT-PCR, of which 76% are described by six operational taxonomic units, including Trichodesmium and the uncultivated UCYN-A, and four non-cyanobacterial diazotrophs that clustered with uncultivated Proteobacteria. Although all five cyanobacterial phylotypes quantified in RT-qPCR assays were detected at different stations in this study, UCYN-A contributed most significantly to the pool of nifH transcripts in both coastal and oligotrophic waters. A comparison of results from RT-PCR clone libraries and RT-qPCR indicated that a γ-proteobacterial phylotype was preferentially amplified in clone libraries, which underscores the need to use caution interpreting clone-library-based nifH studies, especially when considering the importance of uncultivated proteobacterial diazotrophs.


Treatise on Geochemistry | 2003

6.02 – Controls of Trace Metals in Seawater

Kenneth W. Bruland; Maeve C. Lohan

Since the early 1970s, marine chemists have gained a first-order understanding of the concentrations, distributions, and chemical behaviors of trace metals in seawater. Important factors initiating this quantum leap in knowledge were major advances in modern analytical chemistry and instrumentation, along with the development and adoption of clean techniques. An instrumental development in the mid-1970s that spurred the early research on trace metals was the availability of the sensitive graphite furnace as the sample introduction system to an atomic absorption spectrometer. More recently, the appearance of inductively coupled plasma (ICP) mass spectrometers has provided an even more sensitive and powerful instrumental capability to the arsenal of marine chemists. In addition to these instruments back in shore-based laboratories, there has been the development of sensitive shipboard methods such as stripping voltammetry and flow injection analysis (FIA) systems with either chemiluminescence or catalytically enhanced spectrophotometric detection. Along with the development of these highly sensitive analytical techniques came a recognition and appreciation of the importance of handling contamination issues by using clean techniques during all phases of sampling and analysis. This is


Proceedings of the National Academy of Sciences of the United States of America | 2014

Seasonal ITCZ migration dynamically controls the location of the (sub)tropical Atlantic biogeochemical divide

Christian Schlosser; J.K. Klar; B. D. Wake; J. T. Snow; David J. Honey; E. M. S. Woodward; Maeve C. Lohan; Eric P. Achterberg; C. M. Moore

Significance Low concentrations of fixed nitrogen restrict phytoplankton growth in much of the low-latitude surface oceans. Diazotrophic cyanobacteria are capable of fixing atmospheric dinitrogen, thereby replenishing the overall pool of fixed nitrogen. As a consequence, spatial–temporal variability in diazotrophy can potentially influence the global nitrogen cycle. Here we show that movement in the region of elevated iron concentrations tied to the seasonal migration of the intertropical convergence zone drives a shift in the latitudinal distribution of dinitrogen fixation and corresponding phosphate depletion in surface waters. Surface nutrient concentrations and diazotrophic activity divide the (sub)tropical Atlantic into a high-phosphate, low-iron system in the south, and a low-phosphate, high-iron system in the north. Inorganic nitrogen depletion restricts productivity in much of the low-latitude oceans, generating a selective advantage for diazotrophic organisms capable of fixing atmospheric dinitrogen (N2). However, the abundance and activity of diazotrophs can in turn be controlled by the availability of other potentially limiting nutrients, including phosphorus (P) and iron (Fe). Here we present high-resolution data (∼0.3°) for dissolved iron, aluminum, and inorganic phosphorus that confirm the existence of a sharp north–south biogeochemical boundary in the surface nutrient concentrations of the (sub)tropical Atlantic Ocean. Combining satellite-based precipitation data with results from a previous study, we here demonstrate that wet deposition in the region of the intertropical convergence zone acts as the major dissolved iron source to surface waters. Moreover, corresponding observations of N2 fixation and the distribution of diazotrophic Trichodesmium spp. indicate that movement in the region of elevated dissolved iron as a result of the seasonal migration of the intertropical convergence zone drives a shift in the latitudinal distribution of diazotrophy and corresponding dissolved inorganic phosphorus depletion. These conclusions are consistent with the results of an idealized numerical model of the system. The boundary between the distinct biogeochemical systems of the (sub)tropical Atlantic thus appears to be defined by the diazotrophic response to spatial–temporal variability in external Fe inputs. Consequently, in addition to demonstrating a unique seasonal cycle forced by atmospheric nutrient inputs, we suggest that the underlying biogeochemical mechanisms would likely characterize the response of oligotrophic systems to altered environmental forcing over longer timescales.


Global Biogeochemical Cycles | 2014

Biogeochemical cycling of dissolved zinc along the GEOTRACES South Atlantic transect GA10 at 40°S

Neil J. Wyatt; Angela Milne; E. M. S. Woodward; Andrew P. Rees; T. J. Browning; Heather Bouman; Paul J. Worsfold; Maeve C. Lohan

The biogeochemical cycle of zinc (Zn) in the South Atlantic, at 40°S, was investigated as part of the UK GEOTRACES program. To date there is little understanding of the supply of Zn, an essential requirement for phytoplankton growth, to this highly productive region. Vertical Zn profiles displayed nutrient-like distributions with distinct gradients associated with the water masses present. Surface Zn concentrations are among the lowest reported for the worlds oceans ( 2 = 0.97, n = 460). Our results suggest that the use of a global Zn-Si relationship would lead to an underestimation of dissolved Zn in deeper waters of the South Atlantic. By utilizing Si* and a new tracer Zn* our data indicate that the preferential removal of Zn in the Southern Ocean prevented a direct return path for dissolved Zn to the surface waters of the South Atlantic at 40°S and potentially the thermocline waters of the South Atlantic subtropical gyre. The importance of Zn for phytoplankton growth was evaluated using the Zn-soluble reactive phosphorus (SRP) relationship. We hypothesize that the low Zn concentrations in the South Atlantic may select for phytoplankton cells with a lower Zn requirement. In addition, a much deeper kink at ~ 500m in the Zn:SRP ratio was observed compared to other oceanic regions. Key Points Dissolved zinc biogeochemical cycle investigated in the South Atlantic Ocean ©2014. American Geophysical Union. All Rights Reserved.


Analytica Chimica Acta | 2013

Flow injection analysis as a tool for enhancing oceanographic nutrient measurements—A review

Paul J. Worsfold; Robert Clough; Maeve C. Lohan; Philippe Monbet; Peter S. Ellis; Christophe R. Quétel; Geerke H. Floor; Ian D. McKelvie

Macronutrient elements (C, N and P) and micronutrient elements (Fe, Co, Cu, Zn and Mn) are widely measured in their various physico-chemical forms in open ocean, shelf sea, coastal and estuarine waters. These measurements help to elucidate the biogeochemical cycling of these elements in marine waters and highlight the ecological and socio-economic importance of the oceans. Due to the dynamic nature of marine waters in terms of chemical, biological and physical processes, it is advantageous to make these measurements in situ and in this regard flow injection analysis (FIA) provides a suitable shipboard platform. This review, therefore, discusses the role of FIA in the determination of macro- and micro-nutrient elements, with an emphasis on manifold design and detection strategies for the reliable shipboard determination of specific nutrient species. The application of various FIA manifolds to oceanographic nutrient determinations is discussed, with an emphasis on sensitivity, selectivity, high throughput analysis and suitability for underway analysis and depth profiles. Strategies for enhancing sensitivity and minimizing matrix effects, e.g. refractive index (schlieren) effects and the important role of uncertainty budgets in underpinning method validation and data quality are discussed in some detail.


Frontiers in Marine Science | 2014

Alkaline phosphatase activity in the subtropical ocean:insights from nutrient, dust and trace metal addition experiments

Claire Mahaffey; Sarah J. Reynolds; Clare E. Davis; Maeve C. Lohan

Phosphorus is an essential nutrient for all life on earth. In the ocean, the most bioavailable form of phosphorus is inorganic phosphate, but in the extensive subtropical gyres, phosphate concentrations can be chronically low and limit primary productivity and nitrogen fixation. In these regions, organisms produce hydrolytic enzymes, such as alkaline phosphatase (AP), that enable them to utilize the more replete dissolved organic phosphorus (DOP) pool to meet their cellular phosphorus demands. In this study, we synthesized data from 14 published studies and present our own findings from two research cruises (D326 and D361) in the eastern subtropical Atlantic to explore the relationship between AP activity (APA) and nutrients, Saharan dust and trace metals. We found that below a threshold phosphate concentration of ~ 30 nM, APA increased with an inverse hyperbolic relationship with phosphate concentration. Meanwhile, DOP concentrations decreased with enhanced APA, indicating utilization of the DOP pool. We found APA rates were significantly higher in the subtropical Atlantic compared to the subtropical Pacific Ocean, even over the same low phosphate concentration range (0 to 50 nM). While the phosphate concentration may have a first order control on the APA rates, we speculate that other factors influence this basin scale contrast. Using bioassay experiments, we show that the addition of Saharan dust and zinc significantly increased the rate of APA. To our knowledge, our results are the first direct field-based evidence that APA is limited by zinc in the subtropical ocean. Further work is required to explore the relationship between trace metals such as iron and zinc, which are co-factors of phosphohydrolytic enzymes, specifically PhoX and PhoA, respectively, and APA in the ocean.


Global Biogeochemical Cycles | 2012

Controls on dissolved cobalt in surface waters of the Sargasso Sea: Comparisons with iron and aluminum

Rachel U. Shelley; Peter N. Sedwick; Thomas S. Bibby; Patricia Cabedo-Sanz; Thomas M. Church; Rodney J. Johnson; Anna I. Macey; Chris M. Marsay; Edward R. Sholkovitz; Simon J. Ussher; Paul J. Worsfold; Maeve C. Lohan

Dissolved cobalt (dCo), iron (dFe) and aluminum (dAl) were determined in water column samples along a meridional transect (?31°N to 24°N) south of Bermuda in June 2008. A general north-to-south increase in surface concentrations of dFe (0.3–1.6 nM) and dAl (14–42 nM) was observed, suggesting that aerosol deposition is a significant source of dFe and dAl, whereas no clear trend was observed for near-surface dCo concentrations. Shipboard aerosol samples indicate fractional solubility values of 8–100% for aerosol Co, which are significantly higher than corresponding estimates of the solubility of aerosol Fe (0.44–45%). Hydrographic observations and analysis of time series rain samples from Bermuda indicate that wet deposition accounts for most (>80%) of the total aeolian flux of Co, and hence a significant proportion of the atmospheric input of dCo to our study region. Our aerosol data imply that the atmospheric input of dCo to the Sargasso Sea is modest, although this flux may be more significant in late summer. The water column dCo profiles reveal a vertical distribution that predominantly reflects ‘nutrient-type’ behavior, versus scavenged-type behavior for dAl, and a hybrid of nutrient- and scavenged-type behavior for dFe. Mesoscale eddies also appear to impact on the vertical distribution of dCo. The effects of biological removal of dCo from the upper water column were apparent as pronounced sub-surface minima (21 ± 4 pM dCo), coincident with maxima in Prochlorococcus abundance. These observations imply that Prochlorococcus plays a major role in removing dCo from the euphotic zone, and that the availability of dCo may regulate Prochlorococcus growth in the Sargasso Sea.

Collaboration


Dive into the Maeve C. Lohan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Hutchins

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Peter N. Sedwick

Bermuda Biological Station for Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge