Magali Kitzmann
University of Montpellier
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Magali Kitzmann.
Molecular and Cellular Biology | 1999
Magali Kitzmann; Marie Vandromme; Valerie Schaeffer; Gilles Carnac; Jean-Claude Labbé; Ned Lamb; Anne Fernandez
ABSTRACT We have examined the role of protein phosphorylation in the modulation of the key muscle-specific transcription factor MyoD. We show that MyoD is highly phosphorylated in growing myoblasts and undergoes substantial dephosphorylation during differentiation. MyoD can be efficiently phosphorylated in vitro by either purified cdk1-cyclin B or cdk1 and cdk2 immunoprecipitated from proliferative myoblasts. Comparative two-dimensional tryptic phosphopeptide mapping combined with site-directed mutagenesis revealed that cdk1 and cdk2 phosphorylate MyoD on serine 200 in proliferative myoblasts. In addition, when the seven proline-directed sites in MyoD were individually mutated, only substitution of serine 200 to a nonphosphorylatable alanine (MyoD-Ala200) abolished the slower-migrating hyperphosphorylated form of MyoD, seen either in vitro after phosphorylation by cdk1-cyclin B or in vivo following overexpression in 10T1/2 cells. The MyoD-Ala200 mutant displayed activity threefold higher than that of wild-type MyoD in transactivation of an E-box-dependent reporter gene and promoted markedly enhanced myogenic conversion and fusion of 10T1/2 fibroblasts into muscle cells. In addition, the half-life of MyoD-Ala200 protein was longer than that of wild-type MyoD, substantiating a role of Ser200 phosphorylation in regulating MyoD turnover in proliferative myoblasts. Taken together, our data show that direct phosphorylation of MyoD Ser200 by cdk1 and cdk2 plays an integral role in compromising MyoD activity during myoblast proliferation.
Oncogene | 1998
Anne Froeschlé; Séverine Alric; Magali Kitzmann; Gilles Carnac; Frédéric Auradé; Cécile Rochette-Egly; Anne Bonnieu
The results reported here indicate that retinoic acid (RA) induces growth arrest and differentiation only in MyoD-expressing muscle cells. Transient transfection assays reveal a functional interaction between MyoD, a key myogenic regulator and RA-receptors, principal mediators of RA actions. Interestingly, we demonstrate that RXR-MyoD-containing complexes are recruited at specific MyoD DNA-binding sites in muscle cells. Furthermore, we also demonstrate that RA-receptors and the muscle basic helix–loop–helix (b-HLH) proteins interact physically. Mutational analysis suggests that this interaction occurs via the basic region of muscle b-HLH proteins and the DNA-binding domain of RA-receptors and is important for functional interactions between these two families of transcription factors. In conclusion, these results highlight novel interactions between two distinct groups of regulatory proteins that influence cell growth and differentiation.
PLOS ONE | 2011
Céline Aguer; Marc Foretz; Louise Lantier; Sophie Hébrard; Benoit Viollet; Jacques Mercier; Magali Kitzmann
Background Permanent fatty acid translocase (FAT/)CD36 relocation has previously been shown to be related to abnormal lipid accumulation in the skeletal muscle of type 2 diabetic patients, however mechanisms responsible for the regulation of FAT/CD36 expression and localization are not well characterized in human skeletal muscle. Methodology/Principal Findings Primary muscle cells derived from obese type 2 diabetic patients (OBT2D) and from healthy subjects (Control) were used to examine the regulation of FAT/CD36. We showed that compared to Control myotubes, FAT/CD36 was continuously cycling between intracellular compartments and the cell surface in OBT2D myotubes, independently of lipid raft association, leading to increased cell surface FAT/CD36 localization and lipid accumulation. Moreover, we showed that FAT/CD36 cycling and lipid accumulation were specific to myotubes and were not observed in reserve cells. However, in Control myotubes, the induction of FAT/CD36 membrane translocation by the activation of (AMP)-activated protein kinase (AMPK) pathway did not increase lipid accumulation. This result can be explained by the fact that pharmacological activation of AMPK leads to increased mitochondrial beta-oxidation in Control cells. Conclusion/Significance Lipid accumulation in myotubes derived from obese type 2 diabetic patients arises from abnormal FAT/CD36 cycling while lipid accumulation in Control cells results from an equilibrium between lipid uptake and oxidation. As such, inhibiting FAT/CD36 cycling in the skeletal muscle of obese type 2 diabetic patients should be sufficient to diminish lipid accumulation.
Biochimica et Biophysica Acta | 2011
Magali Kitzmann; Louise Lantier; Sophie Hébrard; Jacques Mercier; Marc Foretz; Céline Aguer
Insulin resistance in type 2 diabetes (T2D) is associated with intramuscular lipid (IMCL) accumulation. To determine whether impaired lipid oxidation is involved in IMCL accumulation, we measured expression of genes involved in mitochondrial oxidative metabolism or biogenesis, mitochondrial content and palmitate beta-oxidation before and after palmitate overload (600μM for 16h), in myotubes derived from healthy subjects and obese T2D patients. Mitochondrial gene expression, content and network were not different between groups. Basal palmitate beta-oxidation was not affected in T2D myotubes, whereas after 16h of palmitate pre-treatment, T2D myotubes in contrast to control myotubes, showed an inability to increase palmitate beta-oxidation (p<0.05). Interestingly, acetyl-CoA carboxylase (ACC) phosphorylation was increased with a tendency for statistical significance after palmitate pre-treatment in control myotubes (p=0.06) but not in T2D myotubes which can explain their inability to increase palmitate beta-oxidation after palmitate overload. To determine whether the activation of the AMP activated protein kinase (AMPK)-ACC pathway was able to decrease lipid content in T2D myotubes, cells were treated with AICAR and metformin. These AMPK activators had no effect on ACC and AMPK phosphorylation in T2D myotubes as well as on lipid content, whereas AICAR, but not metformin, increased AMPK phosphorylation in control myotubes. Interestingly, metformin treatment and mitochondrial inhibition by antimycin induced increased lipid content in control myotubes. We conclude that T2D myotubes display an impaired capacity to respond to metabolic stimuli.
Neuroscience Letters | 1996
Jean-Bernard Lazaro; Magali Kitzmann; Jean-Claude Cavadore; Yves Muller; Jean Clos; Anne Fernandez; Ned J.C. Lamb
We have examined the expression of cyclin dependent kinase (cdk) 5 protein kinase and p35nck5a, its activator subunit, during postnatal neurogenesis in rat cerebellum, using mono-specific antibodies. Both cdk5 and p35nck5a are present and associated in proliferative stages, although cdk5-p35 kinase activity is barely detectable. Cdk5-p35 activity, but not the expression of either subunit, increases up to 6-fold during neuronal differentiation. Since we observe that cdk5 is phosphorylated on tyrosine in proliferative, but not in post-mitotic stages, we suggest that post-translational regulatory mechanisms control cdk5-p35 protein kinase activity during neurogenesis.
Molecular and Cellular Endocrinology | 2010
Céline Aguer; Jacques Mercier; Magali Kitzmann
In type 2 diabetes, a strong correlation between intramyocellular lipid accumulation and insulin resistance exists but whether intramyocellular accumulation is a cause or a consequence of insulin resistance is not clear. Lipid accumulation and response to insulin were evaluated in primary human myotubes derived from non-diabetic subjects and type 2 diabetic patients. Myotubes derived from type 2 diabetic patients had a defective response to insulin without showing a significant increase in lipid accumulation compared to myotubes derived from non-diabetic subjects. In myotubes derived from non-diabetic subjects, response to insulin stimulation (Akt phosphorylation) was abrogated and lipid content was increased after palmitate treatment. However, chronic exposure to insulin or inhibition of mitochondrial activity by antimycin led to independent changes of lipid content and response to insulin in myotubes derived from non-diabetic subjects. Altogether these results suggest that lipid accumulation and response to insulin are not invariably linked.
Journal of Cell Biology | 1998
Magali Kitzmann; Gilles Carnac; Marie Vandromme; Michael Primig; Ned Lamb; Anne Fernandez
Journal of Cell Science | 1997
Jean-Bernard Lazaro; Magali Kitzmann; Marie-Alix Poul; Marie Vandromme; Ned Lamb; Anne Fernandez
Biologie Aujourd'hui | 2007
Sylvain Bordenave; Céline Aguer; Magali Kitzmann; Jacques Mercier
Journal of Applied Physiology | 2003
Martin Flück; Magali Kitzmann; Christoph Däpp; Matthias Chiquet; Frank W. Booth; Anne Fernandez