Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Magalie Bénard is active.

Publication


Featured researches published by Magalie Bénard.


Frontiers in Microbiology | 2015

The absence of the Pseudomonas aeruginosa OprF protein leads to increased biofilm formation through variation in c-di-GMP level

Joana A. Moscoso; Rachel Duchesne; Thibaut Rosay; Laurène Fito-Boncompte; Gwendoline Gicquel; Olivier Maillot; Magalie Bénard; Alexis Bazire; Gerald Brenner-Weiss; Olivier Lesouhaitier; Patrice Lerouge; Nicole Orange; Marc Feuilloley; Joerg Overhage; Alain Filloux; Sylvie Chevalier

OprF is the major outer membrane porin in bacteria belonging to the Pseudomonas genus. In previous studies, we have shown that OprF is required for full virulence expression of the opportunistic pathogen Pseudomonas aeruginosa. Here, we describe molecular insights on the nature of this relationship and report that the absence of OprF leads to increased biofilm formation and production of the Pel exopolysaccharide. Accordingly, the level of c-di-GMP, a key second messenger in biofilm control, is elevated in an oprF mutant. By decreasing c-di-GMP levels in this mutant, both biofilm formation and pel gene expression phenotypes were restored to wild-type levels. We further investigated the impact on two small RNAs, which are associated with the biofilm lifestyle, and found that expression of rsmZ but not of rsmY was increased in the oprF mutant and this occurs in a c-di-GMP-dependent manner. Finally, the extracytoplasmic function (ECF) sigma factors AlgU and SigX displayed higher activity levels in the oprF mutant. Two genes of the SigX regulon involved in c-di-GMP metabolism, PA1181 and adcA (PA4843), were up-regulated in the oprF mutant, partly explaining the increased c-di-GMP level. We hypothesized that the absence of OprF leads to a cell envelope stress that activates SigX and results in a c-di-GMP elevated level due to higher expression of adcA and PA1181. The c-di-GMP level can in turn stimulate Pel synthesis via increased rsmZ sRNA levels and pel mRNA, thus affecting Pel-dependent phenotypes such as cell aggregation and biofilm formation. This work highlights the connection between OprF and c-di-GMP regulatory networks, likely via SigX (ECF), on the regulation of biofilm phenotypes.


Journal of Biological Chemistry | 2004

Characterization of C3a and C5a Receptors in Rat Cerebellar Granule Neurons during Maturation NEUROPROTECTIVE EFFECT OF C5a AGAINST APOPTOTIC CELL DEATH

Magalie Bénard; Bruno J. Gonzalez; Marie-Thérèse Schouft; Anthony Falluel-Morel; David Vaudry; Philippe Chan; Hubert Vaudry; Marc Fontaine

There is now clear evidence that the Complement anaphylatoxin C3a and C5a receptors (C3aR and C5aR) are expressed in glial cells, notably in astrocytes and microglia. In contrast, very few data are available concerning the possible expression of these receptors in neurons. Here, we show that transient expression of C3aR and C5aR occurs in cerebellar granule neurons in vivo with a maximal density in 12-day-old rat, suggesting a role of these receptors during development of the cerebellum. Expression of C3aR and C5aR mRNAs and proteins was also observed in vitro in cultured cerebellar granule cells. Quantification of the mRNAs by real-time reverse transcription-PCR showed a peak of expression at day 2 in vitro (DIV 2); the C3aR and C5aR proteins were detected by Western blot analysis at DIV 4 and by flow cytometry and immunocytochemistry in differentiating neurons with a maximum density at DIV 4–9. Apoptosis of granule cells plays a crucial role for the harmonious development of the cerebellar cortex. We found that, in cultured granule neurons in which apoptosis was induced by serum deprivation and low potassium concentration, a C5aR agonist promoted cell survival and inhibited caspase-3 activation and DNA fragmentation. The neuroprotective effect of the C5aR agonist was associated with a marked inhibition of caspase-9 activity and partial restoration of mitochondrial integrity. Our results provide the first evidence that C3aR and C5aR are both expressed in cerebellar granule cells during development and that C5a, but not C3a, is a potent inhibitor of apoptotic cell death in cultured granule neurons.


Journal of Biological Chemistry | 2009

Chromogranin A Promotes Peptide Hormone Sorting to Mobile Granules in Constitutively and Regulated Secreting Cells ROLE OF CONSERVED N- AND C-TERMINAL PEPTIDES

Maité Montero-Hadjadje; Salah Elias; Laurence Chevalier; Magalie Bénard; Yannick Tanguy; Valérie Turquier; Ludovic Galas; Laurent Yon; María M. Malagón; Azeddine Driouich; Stéphane Gasman; Youssef Anouar

Chromogranin A (CgA) has been proposed to play a major role in the formation of dense-core secretory granules (DCGs) in neuroendocrine cells. Here, we took advantage of unique features of the frog CgA (fCgA) to assess the role of this granin and its potential functional determinants in hormone sorting during DCG biogenesis. Expression of fCgA in the constitutively secreting COS-7 cells induced the formation of mobile vesicular structures, which contained cotransfected peptide hormones. The fCgA and the hormones coexpressed in the newly formed vesicles could be released in a regulated manner. The N- and C-terminal regions of fCgA, which exhibit remarkable sequence conservation with their mammalian counterparts were found to be essential for the formation of the mobile DCG-like structures in COS-7 cells. Expression of fCgA in the corticotrope AtT20 cells increased pro-opiomelanocortin levels in DCGs, whereas the expression of N- and C-terminal deletion mutants provoked retention of the hormone in the Golgi area. Furthermore, fCgA, but not its truncated forms, promoted pro-opiomelanocortin sorting to the regulated secretory pathway. These data demonstrate that CgA has the intrinsic capacity to induce the formation of mobile secretory granules and to promote the sorting and release of peptide hormones. The conserved terminal peptides are instrumental for these activities of CgA.


Molecular Immunology | 2008

Role of complement anaphylatoxin receptors (C3aR, C5aR) in the development of the rat cerebellum

Magalie Bénard; Emilie Raoult; David Vaudry; Jérôme Leprince; Anthony Falluel-Morel; Bruno J. Gonzalez; Ludovic Galas; Hubert Vaudry; Marc Fontaine

There is now strong evidence for non-immune or inflammatory functions of complement, notably in the central nervous system. In particular, it has been recently reported that the anaphylatoxin receptors C3aR and C5aR are transiently expressed in the cerebellar cortex of newborn rat, suggesting that anaphylatoxins are involved in the histogenesis of the cerebellum. In the present study, we have investigated the effects of C3aR and C5aR agonists and antagonists on the development of the cerebellum of 11-12-day-old rats in vivo and in vitro. Sub-dural injection of C3aR and C5aR agonists at the surface of the cerebellum transiently modified the thickness of the cortical layers. The C5aR agonist provoked an enlargement of the external granule cell layer (EGL) that was due to increased proliferation of immature granule neurons. Conversely, the C3aR agonist decreased the thickness of the EGL and increased the thickness of the internal granule cell layer (IGL), suggesting that C3a accelerates the migration process of granule cells from the EGL to the IGL. Video-microscopy examination of cultured granule neurons confirmed the role of C3aR in cell motility. These results provide clear evidence for the involvement of anaphylatoxin receptors in the histogenesis of the cerebellar cortex.


Journal of Immunology | 2004

Expression of a functional C5a receptor in regenerating hepatocytes and its involvement in a proliferative signaling pathway in rat

Maryvonne Daveau; Magalie Bénard; Michel Scotté; Marie-Thérèse Schouft; Martine Hiron; Arnaud François; Jean-Philippe Salier; Marc Fontaine

Activation of the complement system generates the anaphylatoxin C5a whose activities are mediated through its binding to the widely expressed C5aR. C5aR mRNA and protein expressions are known to be induced in rat hepatocytes under inflammatory conditions. However, little is known about the role of the C5a/C5aR complex in liver and its involvement during a proliferative process. We have evaluated the expression of C5aR in regenerating rat hepatocytes following a partial hepatectomy and in hepatocyte cultures. C5aR induction was observed in hepatocytes from regenerating liver, as well as in normal hepatocytes under a culture-induced stress. The effect of a stimulation by a C5a agonist upon the synthesis of a growth factor/receptor pair (hepatocyte growth factor/c-Met) was also evaluated. Our data demonstrated an up-regulated expression of hepatocyte growth factor and c-Met mRNAs, but we failed to observe a direct mitogenic effect of C5a in culture. However, a significantly increased expression of cyclin E and D1mRNA levels, as well as an increased BrdU incorporation, were observed in rats given an i.v. C5a agonist injection following an 80% partial hepatectomy. These studies demonstrate for the first time that: 1) C5aR is up-regulated during liver regeneration, 2) the binding of C5a to C5aR promotes a growth response, and 3) C5aR is involved in a cell cycle signaling pathway. Taken together, these findings point to a novel role for the hepatic C5aR implicating this complement system in the context of normal or abnormal proliferative pathways.


Journal of Neuroinflammation | 2006

Interleukin-1β and anaphylatoxins exert a synergistic effect on NGF expression by astrocytes

Anne-christine Jauneau; Alexander M. Ischenko; Alexandra Chatagner; Magalie Bénard; Philippe Chan; Marie-Thérèse Schouft; Christine Patte; Hubert Vaudry; Marc Fontaine

C3a and C5a anaphylatoxins are proinflammatory polypeptides released during complement activation. They exert their biological activities through interaction with two G protein-coupled receptors named C3aR and C5aR, respectively. In the brain, these receptors are expressed on glial cells, and some recent data have suggested that anaphylatoxins could mediate neuroprotection. In this study, we used RT-PCR and ribonuclease protection assays (RPA) to investigate the role of anaphylatoxins on neurotrophin expression by the human glioblastoma cell line T98G and by rat astrocytes. Our data show that for both cell types, anaphylatoxins upregulate expression of NGF mRNA. This response depended on a G protein-coupled pathway since pre-treatment of cells with pertussis toxin (PTX) completely blocked NGF mRNA increases. This effect was anaphylatoxin-specific since pre-incubation with anti-C3a or anti-C5aR antibodies abolished the effects of C3a and C5a, respectively. The regulation of NGF mRNA by anaphylatoxins was not accompanied by translation into protein expression, but there was a significant synergic effect of anaphylatoxins/IL-1b costimulation. Our demonstration of involvement of anaphylatoxins in the NGF release process by astrocytes suggests that C3a and C5a could modulate neuronal survival in the CNS.


SpringerPlus | 2015

Characterization of neuropeptides which control cerebellar granule cell survival, migration and differentiation

David Vaudry; Auriane Corbière; M. Basille; Seyma Bahdoudi; Olfa Masmoudi; Jérôme Leprince; Delphine Burel; Magalie Bénard; Ludovic Galas

During cerebellar development, granule cell precursors are produced from a secondary germinative zone forming the external granule cell layer (EGL). Immature granule neurons from the inner part of the EGL then start a tangential migration followed by a centripetal inward radial migration across the molecular and Purkinje cell layers to reach their final destination at the bottom of the forming internal granule cell layer (IGL). This complex migratory process is highly regulated and takes about 2 days in rodents and it is essential for the proper formation of the cortical layers forming the mature cerebellum. In the IGL, granule cells differentiate to establish functional excitatory synapses with GABAergic neurons including Purkinje, basket, stellate and Golgi cells, or die. Some neurotrophins and neurotransmitters have been shown to be involved in the control of cerebellar granule cell survival, migration and differentiation. Initially, when I started my carrier as a researcher, we used to claim that very few neuropeptides were produced in the cerebellum. Nevertheless, we now know that this was wrong as we have recently identified by mass spectrometry over 70 peptides expressed in the cerebellum during development. Over the years, the involvement of some of these peptides such as somatostatin, PACAP or ODN, has been established in the control of cerebellar granule cell survival, migration and differentiation as will illustrate my presentation.


Journal of Molecular Neuroscience | 2008

Peroxiredoxin 2 is involved in the neuroprotective effects of PACAP in cultured cerebellar granule neurons.

Béatrice Botia; Damien Seyer; Aurélia Ravni; Magalie Bénard; Anthony Falluel-Morel; Pascal Cosette; Thierry Jouenne; Alain Fournier; Hubert Vaudry; Bruno J. Gonzalez; David Vaudry

The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is known to counteract in vitro the deleterious effects of toxic agents on cerebellar granule cell survival and differentiation. The potent antiapoptotic action of PACAP is mediated through inhibition of caspase-3 activity; however, additional proteins are likely involved and remain to be identified. Two-dimensional gel electrophoresis analysis coupled with mass spectrometry characterization led to the identification of a protein, peroxiredoxin 2, which was induced after a 6-h treatment with PACAP. Western blot analysis confirmed the regulation of peroxiredoxin 2 by PACAP and revealed that this protein is induced by both cyclic AMP and protein kinase C stimulators. Inhibition of peroxiredoxin 2 expression, using two distinct small-interfering RNAs (siRNAs), reduced the effect of PACAP on caspase-3 activity and cerebellar granule cell survival. Peroxiredoxin 2 expression was also induced in vivo and in vitro by ethanol. Although ethanol and PACAP exert opposite effects on caspase-3 activity, inhibition of peroxiredoxin 2 expression, using siRNAs, only reduced the ability of PACAP to prevent ethanol-induced caspase-3 activity. Taken together, these data indicate that peroxiredoxin 2 is probably involved in the neurotrophic effect of PACAP and suggest that this protein may have a therapeutic potential for the treatment of some neurodegenerative diseases.


Experimental Dermatology | 2013

Antimicrobial peptides and pro‐inflammatory cytokines are differentially regulated across epidermal layers following bacterial stimuli

Giuseppe Percoco; Chloé Merle; Thomas Jaouen; Magalie Bénard; Mélanie Hillion; Lily Mijouin; Elian Lati; Marc Feuilloley; Luc Lefeuvre; Azeddine Driouich; Marie-Laure Follet-Gueye

The skin is a natural barrier between the body and the environment and is colonised by a large number of microorganisms. Here, we report a complete analysis of the response of human skin explants to microbial stimuli. Using this ex vivo model, we analysed at both the gene and protein level the response of epidermal cells to Staphylococcus epidermidis (S. epidermidis) and Pseudomonas fluorescens (P. fluorescens), which are present in the cutaneous microbiota. We showed that both bacterial species affect the structure of skin explants without penetrating the living epidermis. We showed by real‐time quantitative polymerase chain reaction (qPCR) that S. epidermidis and P. fluorescens increased the levels of transcripts that encode antimicrobial peptides (AMPs), including human β defensin (hBD)2 and hBD3, and the pro‐inflammatory cytokines interleukin (IL)‐1α and (IL)‐1‐β, as well as IL‐6. In addition, we analysed the effects of bacterial stimuli on the expression profiles of genes related to innate immunity and the inflammatory response across the epidermal layers, using laser capture microdissection (LCM) coupled to qPCR. We showed that AMP transcripts were principally upregulated in suprabasal keratinocytes. Conversely, the expression of pro‐inflammatory cytokines was upregulated in the lower epidermis. These findings were confirmed by protein localisation using specific antibodies coupled to optical or electron microscopy. This work underscores the potential value of further studies that use LCM on human skin explants model to study the roles and effects of the epidermal microbiota on human skin physiology.


Neurotoxicity Research | 2011

Neuroprotective Effects of PACAP Against Ethanol-Induced Toxicity in the Developing Rat Cerebellum

Béatrice Botia; Valérie Jolivel; Delphine Burel; Vadim Le Joncour; Vincent Roy; Mickaël Naassila; Magalie Bénard; Alain Fournier; Hubert Vaudry; David Vaudry

The developing rat cerebellum is particularly sensitive to alcohol at the end of the first postnatal week, a period of intense neurogenesis. The neuropeptide Pituitary adenylate cyclase-activating polypeptide (PACAP) has previously been shown to prevent the death of cultured neurons in vitro. We have thus investigated the capacity of PACAP to counteract ethanol toxicity in 8-day-old rats. Behavioral studies revealed that PACAP reduces the deleterious action of alcohol in the negative geotaxis test. Administration of ethanol induced a transient increase of the expression of pro-apoptotic genes including c-jun or caspase-3, which could be partially blocked by PACAP. Alcohol inhibited the expression of the α6 GABAA subunit while PACAP increased neuroD2 mRNA level, two markers of neuronal differentiation. Although gene regulations occurred rapidly, a third injection of ethanol was required to strongly reduce the number of granule cells in the internal granule cell layer, an effect which was totally blocked by PACAP. The action of PACAP was mimicked by D-JNKi1 and Z-VAD-FMK, indicating the involvement of the jun and caspase-3 pathways in alcohol toxicity. The present data demonstrate that PACAP can counteract in vivo the deleterious effect of ethanol. The beneficial action of PACAP on locomotor activity precedes its activity on cell survival, indicating that PACAP can block the detrimental action of ethanol on cell differentiation.

Collaboration


Dive into the Magalie Bénard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ludovic Galas

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Fournier

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge