Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Magaly Toro is active.

Publication


Featured researches published by Magaly Toro.


BMC Microbiology | 2009

Occurrence and enumeration of Campylobacter spp. during the processing of Chilean broilers

Guillermo Figueroa; Miriam Troncoso; Cristián López; Patricia Rivas; Magaly Toro

BackgroundThermotolerant Campylobacter is among the more prevalent bacterial pathogens that cause foodborne diseases. This study aimed at evaluating the occurrence of thermotolerant Campylobacter contamination in chicken carcasses and processing plant stations (chilling water, scalding water, defeathering machinery, evisceration machine, and transport crates) in two of the Chilean main slaughterhouses. In addition, the isolation rates of thermotolerant Campylobacter during evisceration and following chiller processing were compared.ResultsThe overall slaughterhouse contamination with thermotolerant Campylobacter was 54%. Differences were evident when the results from each plant were compared (plant A and plant B was 72% and 36%, respectively). The sampling points with the greatest contamination rates in both plants were after evisceration (90% and 54%, for plants A and B respectively). The decrease of thermotolerant Campylobacter contamination after chilling was significant (2 and 1.6 logs for plant A and B respectively P < 0.05).ConclusionOur findings indicate that chilling process has a limited effect in the final products Campylobacter contamination because poultry enter the slaughter processing with high counts of contamination. This may represent a health risk to consumers, if proper cooking practices are not employed. The levels and frequencies of Campylobacter found during the processing of Chilean poultry appear to be similar to those reported elsewhere in the world.


Food Microbiology | 2012

Non-O157 Shiga toxin-producing Escherichia coli in retail ground beef and pork in the Washington D.C. area

Wenting Ju; Jinling Shen; Yi Li; Magaly Toro; Shaohua Zhao; Sherry Ayers; Mohamed Badaoui Najjar; Jianghong Meng

The prevalence and characteristics of non-O157 Shiga toxin-producing Escherichia coli (STEC) in retail ground meat from the Washington D.C. area were investigated in this study. STEC from 480 ground beef and pork samples were identified using PCR screening followed by colony hybridization. The STEC isolates were serogrouped and examined for the presence of virulence genes (stx1, stx2, eae and hlyA), and antimicrobial susceptibility. PFGE was used to identify the clonal relationships of STEC isolates, and PCR-RFLP was employed to determine stx subtypes. In addition, the cytotoxicity of STEC isolates was determined using a Vero cell assay. STEC were identified in 12 (5.2%) of 231 ground pork and 13 (5.2%) of 249 ground beef samples. Among 32 STEC isolates recovered from the 25 samples, 12 (37.5%) carried stx2dact and 7 (21.9%) carried hlyA, but none carried eae. Nine isolates were identified as O91, and 17 (53.1%) isolates were resistant to two or more antimicrobials. Verotoxicity was detected in 26 (81.3%) of the STEC isolates. Thus, the retail ground meat was contaminated with a heterogeneous population of non-O157 STEC, some of which were potential human pathogens.


Genome Announcements | 2014

Draft Genome Sequence of Bivalent Clostridium botulinum Strain IBCA10-7060, Encoding Botulinum Neurotoxin B and a New FA Mosaic Type

Narjol Gonzalez-Escalona; Nagarajan Thirunavukkarasu; Ajay K. Singh; Magaly Toro; Eric W. Brown; Donald Zink; Andreas Rummel; Shashi Sharma

ABSTRACT Here we report the genome sequence of a Clostridium botulinum strain IBCA10-7060 producing botulinum neurotoxin serotype B and a new toxin serotype. Multilocus sequence typing analysis revealed that this strain belongs to a new sequence type, and whole-genome single nucleotide polymorphism analysis showed that this strain clustered with strains in lineage 2 from group I.


Applied and Environmental Microbiology | 2014

Association of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Elements with Specific Serotypes and Virulence Potential of Shiga Toxin-Producing Escherichia coli

Magaly Toro; Guojie Cao; Wenting Ju; Marc W. Allard; Rodolphe Barrangou; Shaohua Zhao; Eric W. Brown; Jianghong Meng

ABSTRACT Shiga toxin-producing Escherichia coli (STEC) strains (n = 194) representing 43 serotypes and E. coli K-12 were examined for clustered regularly interspaced short palindromic repeat (CRISPR) arrays to study genetic relatedness among STEC serotypes. A subset of the strains (n = 81) was further analyzed for subtype I-E cas and virulence genes to determine a possible association of CRISPR elements with potential virulence. Four types of CRISPR arrays were identified. CRISPR1 and CRISPR2 were present in all strains tested; 1 strain also had both CRISPR3 and CRISPR4, whereas 193 strains displayed a short, combined array, CRISPR3-4. A total of 3,353 spacers were identified, representing 528 distinct spacers. The average length of a spacer was 32 bp. Approximately one-half of the spacers (54%) were unique and found mostly in strains of less common serotypes. Overall, CRISPR spacer contents correlated well with STEC serotypes, and identical arrays were shared between strains with the same H type (O26:H11, O103:H11, and O111:H11). There was no association identified between the presence of subtype I-E cas and virulence genes, but the total number of spacers had a negative correlation with potential pathogenicity (P < 0.05). Fewer spacers were found in strains that had a greater probability of causing outbreaks and disease than in those with lower virulence potential (P < 0.05). The relationship between the CRISPR-cas system and potential virulence needs to be determined on a broader scale, and the biological link will need to be established.


Applied and Environmental Microbiology | 2013

Distribution of Pathogenicity Islands OI-122, OI-43/48, and OI-57 and a High-Pathogenicity Island in Shiga Toxin-Producing Escherichia coli

Wenting Ju; Jinling Shen; Magaly Toro; Shaohua Zhao; Jianghong Meng

ABSTRACT Pathogenicity islands (PAIs) play an important role in Shiga toxin-producing Escherichia coli (STEC) pathogenicity. The distribution of PAIs OI-122, OI-43/48, and OI-57 and a high-pathogenicity island (HPI) were determined among 98 STEC strains assigned to seropathotypes (SPTs) A to E. PCR and PCR-restriction fragment length polymorphism assays were used to identify 14 virulence genes that belonged to the four PAIs and to subtype eae and stx genes, respectively. Phylogenetic trees were constructed based on the sequences of pagC among 34 STEC strains and iha among 67 diverse pathogenic E. coli, respectively. Statistical analysis demonstrated that the prevalences of OI-122 (55.82%) and OI-57 (82.35%) were significantly greater in SPTs (i.e., SPTs A, B, and C) that are frequently associated with severe disease than in other SPTs. terC (62.5%) and ureC (62.5%) in OI-43/48 were also significantly more prevalent in SPTs A, B, and C than in SPTs D and E. In addition, OI-122, OI-57, and OI-43/48 and their associated virulence genes (except iha) were found to be primarily associated with eae-positive STEC, whereas HPI occurred independently of the eae presence. The strong association of OI-122, OI-43/48, and OI-57 with eae-positive STEC suggests in part that different pathogenic mechanisms exist between eae-positive and eae-negative STEC strains. Virulence genes in PAIs that are associated with severe diseases can be used as potential markers to aid in identifying highly virulent STEC.


PeerJ | 2014

The evolutionary history and diagnostic utility of the CRISPR-Cas system within Salmonella enterica ssp. enterica

James B. Pettengill; Ruth Timme; Rodolphe Barrangou; Magaly Toro; Marc W. Allard; Errol Strain; Steven M. Musser; Eric W. Brown

Evolutionary studies of clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (cas) genes can provide insights into host-pathogen co-evolutionary dynamics and the frequency at which different genomic events (e.g., horizontal vs. vertical transmission) occur. Within this study, we used whole genome sequence (WGS) data to determine the evolutionary history and genetic diversity of CRISPR loci and cas genes among a diverse set of 427 Salmonella enterica ssp. enterica isolates representing 64 different serovars. We also evaluated the performance of CRISPR loci for typing when compared to whole genome and multilocus sequence typing (MLST) approaches. We found that there was high diversity in array length within both CRISPR1 (median = 22; min = 3; max = 79) and CRISPR2 (median = 27; min = 2; max = 221). There was also much diversity within serovars (e.g., arrays differed by as many as 50 repeat-spacer units among Salmonella ser. Senftenberg isolates). Interestingly, we found that there are two general cas gene profiles that do not track phylogenetic relationships, which suggests that non-vertical transmission events have occurred frequently throughout the evolutionary history of the sampled isolates. There is also considerable variation among the ranges of pairwise distances estimated within each cas gene, which may be indicative of the strength of natural selection acting on those genes. We developed a novel clustering approach based on CRISPR spacer content, but found that typing based on CRISPRs was less accurate than the MLST-based alternative; typing based on WGS data was the most accurate. Notwithstanding cost and accessibility, we anticipate that draft genome sequencing, due to its greater discriminatory power, will eventually become routine for traceback investigations.


Applied and Environmental Microbiology | 2016

Whole-Genome Sequencing Analysis of Salmonella enterica Serovar Enteritidis Isolates in Chile Provides Insights into Possible Transmission between Gulls, Poultry, and Humans

Magaly Toro; Patricio Retamal; Sherry Ayers; Marlen Barreto; Marc W. Allard; Eric W. Brown; Narjol Gonzalez-Escalona

ABSTRACT Salmonella enterica subsp. enterica serotype Enteritidis is a major cause of human salmonellosis worldwide; however, little is known about the genetic relationships between S. Enteritidis clinical strains and S. Enteritidis strains from other sources in Chile. We compared the whole genomes of 30 S. Enteritidis strains isolated from gulls, domestic chicken eggs, and humans in Chile, to investigate their phylogenetic relationships and to establish their relatedness to international strains. Core genome multilocus sequence typing (cgMLST) analysis showed that only 246/4,065 shared loci differed among these Chilean strains, separating them into two clusters (I and II), with cluster II being further divided into five subclusters. One subcluster (subcluster 2) contained strains from all surveyed sources that differed at 1 to 18 loci (of 4,065 loci) with 1 to 18 single-nucleotide polymorphisms (SNPs), suggesting interspecies transmission of S. Enteritidis in Chile. Moreover, clusters were formed by strains that were distant geographically, which could imply that gulls might be spreading the pathogen throughout the country. Our cgMLST analysis, using other S. Enteritidis genomes available in the National Center for Biotechnology Information (NCBI) database, showed that S. Enteritidis strains from Chile and the United States belonged to different lineages, which suggests that S. Enteritidis regional markers might exist and could be used for trace-back investigations. IMPORTANCE This study highlights the importance of gulls in the spread of Salmonella Enteritidis in Chile. We revealed a close genetic relationship between some human and gull S. Enteritidis strains (with as few as 2 of 4,065 genes being different), and we also found that gull strains were present in clusters formed by strains isolated from other sources or distant locations. Together with previously published evidence, this suggests that gulls might be spreading this pathogen between different regions in Chile and that some of those strains have been transmitted to humans. Moreover, we discovered that Chilean S. Enteritidis strains clustered separately from most of S. Enteritidis strains isolated throughout the world (in the GenBank database) and thus it might be possible to distinguish the geographical origins of strains based on specific genomic features. This could be useful for trace-back investigations of foodborne illnesses throughout the world.


Applied and Environmental Microbiology | 2016

A Nonautochthonous U.S. Strain of Vibrio parahaemolyticus Isolated from Chesapeake Bay Oysters Caused the Outbreak in Maryland in 2010

Julie Haendiges; Jessica L. Jones; Robert A. Myers; Clifford S. Mitchell; Erin Butler; Magaly Toro; Narjol Gonzalez-Escalona

ABSTRACT In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to the consumption of oysters. Strains isolated from both stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). However, the oysters contained other potentially pathogenic V. parahaemolyticus strains exhibiting different PFGE patterns. In order to assess the identity, genetic makeup, relatedness, and potential pathogenicity of the V. parahaemolyticus strains, we sequenced 11 such strains (2 clinical strains and 9 oyster strains). We analyzed these genomes by in silico multilocus sequence typing (MLST) and determined their phylogeny using a whole-genome MLST (wgMLST) analysis. Our in silico MLST analysis identified six different sequence types (STs) (ST8, ST676, ST810, ST811, ST34, and ST768), with both of the clinical and four of the oyster strains being identified as belonging to ST8. Using wgMLST, we showed that the ST8 strains from clinical and oyster samples were nearly indistinguishable and belonged to the same outbreak, confirming that local oysters were the source of the infections. The remaining oyster strains were genetically diverse, differing in >3,000 loci from the Maryland ST8 strains. eBURST analysis comparing these strains with strains of other STs available at the V. parahaemolyticus MLST website showed that the Maryland ST8 strains belonged to a clonal complex endemic to Asia. This indicates that the ST8 isolates from clinical and oyster sources were likely not endemic to Maryland. Finally, this study demonstrates the utility of whole-genome sequencing (WGS) and associated analyses for source-tracking investigations. IMPORTANCE Vibrio parahaemolyticus is an important foodborne pathogen and the leading cause of bacterial infections in the United States associated with the consumption of seafood. In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to oyster consumption. Strains isolated from stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). The oysters also contained other potentially pathogenic V. parahaemolyticus strains with different PFGE patterns. Since their identity, genetic makeup, relatedness, and potential pathogenicity were unknown, their genomes were determined by using next-generation sequencing. Whole-genome sequencing (WGS) analysis by whole-genome multilocus sequence typing (wgMLST) allowed (i) identification of clinical and oyster strains with matching PFGE profiles as belonging to ST8, (ii) determination of oyster strain diversity, and (iii) identification of the clinical strains as belonging to a clonal complex (CC) described only in Asia. Finally, WGS and associated analyses demonstrated their utility for trace-back investigations.


Applied and Environmental Microbiology | 2016

Virulence Gene Profiles and Clonal Relationships of Escherichia coli O26:H11 Isolates from Feedlot Cattle as Determined by Whole-Genome Sequencing

Narjol Gonzalez-Escalona; Magaly Toro; Lydia V. Rump; Guojie Cao; T. G. Nagaraja; Jianghong Meng

ABSTRACT Escherichia coli O26 is the second most important enterohemorrhagic E. coli (EHEC) serogroup worldwide. Serogroup O26 strains are categorized mainly into two groups: enteropathogenic (EPEC) O26, carrying a locus of enterocyte effacement (LEE) and mostly causing mild diarrhea, and Shiga-toxigenic (STEC) O26, which carries the Shiga toxin (STX) gene (stx), responsible for more severe outcomes. stx-negative O26 strains can be further split into two groups. One O26 group differs significantly from O26 EHEC, while the other O26 EHEC-like group shows all the characteristics of EHEC O26 except production of STX. In order to determine the different populations of O26 E. coli present in U.S. cattle, we sequenced 42 O26:H11 strains isolated from feedlot cattle and compared them to 37 O26:H11 genomes available in GenBank. Phylogenetic analysis by whole-genome multilocus sequence typing (wgMLST) showed that O26:H11/H− strains in U.S. cattle were highly diverse. Most strains were sequence type 29 (ST29). By wgMLST, two clear lineages could be distinguished among cattle strains. Lineage 1 consisted of O26:H11 EHEC-like strains (ST29) (4 strains) and O26:H11 EHEC strains (ST21) (2 strains), and lineage 2 (36 strains) consisted of O26:H11 EPEC strains (ST29). Overall, our analysis showed U.S. cattle carried pathogenic (ST21; stx 1 + ehxA + toxB +) and also potentially pathogenic (ST29; ehxA + toxB + ) O26:H11 E. coli strains. Furthermore, in silico analysis showed that 70% of the cattle strains carried at least one antimicrobial resistance gene. Our results showed that whole-genome sequence analysis is a robust and valid approach to identify and genetically characterize E. coli O26:H11, which is of importance for food safety and public health. IMPORTANCE Escherichia coli O26 is the second most important type of enterohemorrhagic E. coli (EHEC) worldwide. Serogroup O26 strains are categorized into two groups: enteropathogenic (EPEC) carrying LEE, causing mild diarrhea, and Shiga toxigenic (STEC) carrying the stx gene, responsible for more severe outcomes. However, there are currently problems in distinguishing one group from the other. Furthermore, several O26 stx-negative strains are consistently misidentified as either EHEC-like or EPEC. The use of whole-genome sequence (WGS) analysis of O26 strains from cattle in the United States (i) allowed identification of O26 strains present in U.S. cattle, (ii) determined O26 strain diversity, (iii) solved the misidentification problem, and (iv) screened for the presence of antimicrobial resistance and virulence genes in the strains. This study provided a framework showing how to easily and rapidly use WGS information to identify and genetically characterize E. coli O26:H11, which is important for food safety and public health.


Foodborne Pathogens and Disease | 2014

Pathogenicity Islands in Shiga Toxin–Producing Escherichia coli O26, O103, and O111 Isolates from Humans and Animals

Wenting Ju; Lydia V. Rump; Magaly Toro; Jinling Shen; Guojie Cao; Shaohua Zhao; Jianghong Meng

Non-O157 Shiga toxin-producing Escherichia coli (STEC) are increasingly recognized as foodborne pathogens worldwide. Serogroups O26, O111, and O103 cause most known outbreaks related to non-O157 STEC. Pathogenicity islands (PAIs) play a major role in the evolution of STEC pathogenicity. To determine the distribution of PAIs often associated with highly virulent STECs (OI-122, OI-43/48, OI-57, and high pathogenicity islands) among STEC O26, O103, and O111, a collection of STEC O26 (n=45), O103 (n=29), and O111 (n=52) from humans and animals were included in this study. Pulsed-field gel electrophoresis (PFGE) with XbaI digestion was used to characterize the clonal relationship of the strains. In addition, a polymerase chain reaction-restriction fragment length polymorphism assay was used to determine eae subtypes. Additional virulence genes on PAIs were identified using specific PCR assays, including OI-122: pagC, sen, efa-1, efa-2, and nleB; OI-43/48: terC, ureC, iha, and aidA-1; OI-57: nleG2-3, nleG5-2, and nleG6-2; and HPI: fyuA and irp2. A PFGE dendrogram demonstrated that instead of clustering together with strains from the same O type (O111:H8), the O111:H11 (n=14) strains clustered together with strains of the same H type (O26:H11, n=45). In addition, O26:H11 and O111:H11 strains carried eae subtype β, whereas O111:H8 strains had eae γ2/θ. The O26:H11 and O111:H11 stains contained an incomplete OI-122 lacking pagC and a complete HPI. However, a complete OI-122 but no HPI was found in the O111:H8 strains. Additionally, aidA-1 of OI-43/48 and nleG6-2 of OI-57 were significantly associated with O26:H11 and O111:H11 strains but were almost missing in O111:H8 strains (p<0.001). This study demonstrated that H11 (O111:H11 and O26:H11) strains were closely related and may have come from the same ancestor.

Collaboration


Dive into the Magaly Toro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric W. Brown

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Marc W. Allard

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Shaohua Zhao

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge