Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Magda Bienko is active.

Publication


Featured researches published by Magda Bienko.


Nature Methods | 2013

Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing

Nicola Crosetto; Abhishek Mitra; Maria Joao Silva; Magda Bienko; Norbert Dojer; Qi Wang; Elif Karaca; Roberto Chiarle; Magdalena Skrzypczak; Krzysztof Ginalski; Philippe Pasero; Maga Rowicka; Ivan Dikic

We present a genome-wide approach to map DNA double-strand breaks (DSBs) at nucleotide resolution by a method we termed BLESS (direct in situ breaks labeling, enrichment on streptavidin and next-generation sequencing). We validated and tested BLESS using human and mouse cells and different DSBs-inducing agents and sequencing platforms. BLESS was able to detect telomere ends, Sce endonuclease–induced DSBs and complex genome-wide DSB landscapes. As a proof of principle, we characterized the genomic landscape of sensitivity to replication stress in human cells, and we identified >2,000 nonuniformly distributed aphidicolin-sensitive regions (ASRs) overrepresented in genes and enriched in satellite repeats. ASRs were also enriched in regions rearranged in human cancers, with many cancer-associated genes exhibiting high sensitivity to replication stress. Our method is suitable for genome-wide mapping of DSBs in various cells and experimental conditions, with a specificity and resolution unachievable by current techniques.


Nature Reviews Genetics | 2015

Spatially resolved transcriptomics and beyond

Nicola Crosetto; Magda Bienko; Alexander van Oudenaarden

Considerable progress in sequencing technologies makes it now possible to study the genomic and transcriptomic landscape of single cells. However, to better understand the complexity of multicellular organisms, we must devise ways to perform high-throughput measurements while preserving spatial information about the tissue context or subcellular localization of analysed nucleic acids. In this Innovation article, we summarize pioneering technologies that enable spatially resolved transcriptomics and discuss how these methods have the potential to extend beyond transcriptomics to encompass spatially resolved genomics, proteomics and possibly other omic disciplines.


Nature Biotechnology | 2015

Integrated genome and transcriptome sequencing of the same cell

Siddharth S. Dey; Lennart Kester; Bastiaan Spanjaard; Magda Bienko; Alexander van Oudenaarden

Single-cell genomics and single-cell transcriptomics have emerged as powerful tools to study the biology of single cells at a genome-wide scale. However, a major challenge is to sequence both genomic DNA and mRNA from the same cell, which would allow direct comparison of genomic variation and transcriptome heterogeneity. We describe a quasilinear amplification strategy to quantify genomic DNA and mRNA from the same cell without physically separating the nucleic acids before amplification. We show that the efficiency of our integrated approach is similar to existing methods for single-cell sequencing of either genomic DNA or mRNA. Further, we find that genes with high cell-to-cell variability in transcript numbers generally have lower genomic copy numbers, and vice versa, suggesting that copy number variations may drive variability in gene expression among individual cells. Applications of our integrated sequencing approach could range from gaining insights into cancer evolution and heterogeneity to understanding the transcriptional consequences of copy number variations in healthy and diseased tissues.


Cell | 2015

Genome-wide maps of nuclear lamina interactions in single human cells.

Jop Kind; Ludo Pagie; Sandra de Vries; Leila Nahidiazar; Siddharth S. Dey; Magda Bienko; Ye Zhan; Bryan R. Lajoie; Carolyn A. de Graaf; Mario Amendola; Geoffrey Fudenberg; Maxim Imakaev; Leonid A. Mirny; Kees Jalink; Job Dekker; Alexander van Oudenaarden; Bas van Steensel

Mammalian interphase chromosomes interact with the nuclear lamina (NL) through hundreds of large lamina-associated domains (LADs). We report a method to map NL contacts genome-wide in single human cells. Analysis of nearly 400 maps reveals a core architecture consisting of gene-poor LADs that contact the NL with high cell-to-cell consistency, interspersed by LADs with more variable NL interactions. The variable contacts tend to be cell-type specific and are more sensitive to changes in genome ploidy than the consistent contacts. Single-cell maps indicate that NL contacts involve multivalent interactions over hundreds of kilobases. Moreover, we observe extensive intra-chromosomal coordination of NL contacts, even over tens of megabases. Such coordinated loci exhibit preferential interactions as detected by Hi-C. Finally, the consistency of NL contacts is inversely linked to gene activity in single cells and correlates positively with the heterochromatic histone modification H3K9me3. These results highlight fundamental principles of single-cell chromatin organization. VIDEO ABSTRACT.


Cell Reports | 2014

FuseFISH: Robust Detection of Transcribed Gene Fusions in Single Cells

Stefan Semrau; Nicola Crosetto; Magda Bienko; Marina Boni; Paolo Bernasconi; Roberto Chiarle; Alexander van Oudenaarden

Transcribed gene fusions are key biomarkers in many hematologic and solid tumors, often representing the primary oncogenic driver mutation. Here, we report an experimental and computational pipeline for detecting fusion transcripts using single-molecule RNA FISH and unbiased correlation analysis (FuseFISH). We constructed a genome-wide database of optimal oligonucleotide sequences, enabling quick design of FuseFISH probes against known and novel fusions. We implemented FuseFISH in cell lines, tissue sections, and purified RNA, reliably detecting one BCR-ABL1 positive in 10,000 negative cells. In 34 hematologic samples, we detected BCR-ABL1 transcripts with high specificity and sensitivity. Finally, we measured BCR-ABL1 expression heterogeneity and dynamics in single CML cells exposed to the kinase inhibitor Nilotinib. Our resource and methods are ideal for streamlined validation of fusions newly identified by next-generation sequencing, and they pave the way to studying the impact of fusion expression variability on clinical outcome.


Nature Communications | 2017

BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks

Winston X. Yan; Reza Mirzazadeh; Silvano Garnerone; David Arthur Scott; Martin W. Schneider; Tomasz Kallas; Joaquin Custodio; Erik Wernersson; Yinqing Li; Linyi Gao; Yana Federova; Bernd Zetsche; Feng Zhang; Magda Bienko; Nicola Crosetto

Precisely measuring the location and frequency of DNA double-strand breaks (DSBs) along the genome is instrumental to understanding genomic fragility, but current methods are limited in versatility, sensitivity or practicality. Here we present Breaks Labeling In Situ and Sequencing (BLISS), featuring the following: (1) direct labelling of DSBs in fixed cells or tissue sections on a solid surface; (2) low-input requirement by linear amplification of tagged DSBs by in vitro transcription; (3) quantification of DSBs through unique molecular identifiers; and (4) easy scalability and multiplexing. We apply BLISS to profile endogenous and exogenous DSBs in low-input samples of cancer cells, embryonic stem cells and liver tissue. We demonstrate the sensitivity of BLISS by assessing the genome-wide off-target activity of two CRISPR-associated RNA-guided endonucleases, Cas9 and Cpf1, observing that Cpf1 has higher specificity than Cas9. Our results establish BLISS as a versatile, sensitive and efficient method for genome-wide DSB mapping in many applications.


Nature Methods | 2013

A versatile genome-scale PCR-based pipeline for high-definition DNA FISH

Magda Bienko; Nicola Crosetto; Leonid Teytelman; Sandy Klemm; Shalev Itzkovitz; Alexander van Oudenaarden

We developed a cost-effective genome-scale PCR-based method for high-definition DNA FISH (HD-FISH). We visualized gene loci with diffraction-limited resolution, chromosomes as spot clusters and single genes together with transcripts by combining HD-FISH with single-molecule RNA FISH. We provide a database of over 4.3 million primer pairs targeting the human and mouse genomes that is readily usable for rapid and flexible generation of probes.


Nature Communications | 2016

Massive and parallel expression profiling using microarrayed single-cell sequencing

Sanja Vickovic; Patrik L. Ståhl; Fredrik Salmén; Sarantis Giatrellis; Jakub Orzechowski Westholm; Annelie Mollbrink; José Fernández Navarro; Joaquin Custodio; Magda Bienko; Lesley-Ann Sutton; Richard Rosenquist; Jonas Frisén; Joakim Lundeberg

Single-cell transcriptome analysis overcomes problems inherently associated with averaging gene expression measurements in bulk analysis. However, single-cell analysis is currently challenging in terms of cost, throughput and robustness. Here, we present a method enabling massive microarray-based barcoding of expression patterns in single cells, termed MASC-seq. This technology enables both imaging and high-throughput single-cell analysis, characterizing thousands of single-cell transcriptomes per day at a low cost (0.13 USD/cell), which is two orders of magnitude less than commercially available systems. Our novel approach provides data in a rapid and simple way. Therefore, MASC-seq has the potential to accelerate the study of subtle clonal dynamics and help provide critical insights into disease development and other biological processes.


Oncotarget | 2017

Quantification of HER2 and estrogen receptor heterogeneity in breast cancer by single-molecule RNA fluorescence in situ hybridization

Laura Annaratone; Michele Simonetti; Erik Wernersson; Caterina Marchiò; Silvano Garnerone; Maria Stella Scalzo; Magda Bienko; Roberto Chiarle; Anna Sapino; Nicola Crosetto

Intra-tumor heterogeneity is a pervasive property of human cancers that poses a major clinical challenge. Here, we describe the characterization, at the transcriptional level, of the intra-tumor topography of two prominent breast cancer biomarkers and drug targets, epidermal growth factor receptor 2 (HER2) and estrogen receptor 1 (ER) in 49 archival breast cancer samples. We developed a protocol for single-molecule RNA FISH in formalin-fixed, paraffin-embedded tissue sections (FFPE-smFISH), which enabled us to simultaneously detect and perform absolute quantification of HER2 and ER mature transcripts in single cells and multiple tumor regions. We benchmarked our method with standard diagnostic techniques, demonstrating that FFPE-smFISH is able to correctly classify breast cancers into well-established molecular subgroups. By counting transcripts in thousands of single cells, we identified different expression modes and levels of inter-cellular variability. In samples expressing both HER2 and ER, many cells co-expressed both genes, although expression levels were typically uncorrelated. Finally, we applied diversity metrics from the field of ecology to assess the intra-tumor topography of HER2 and ER gene expression, revealing that the spatial distribution of these key biomarkers can vary substantially even among breast cancers of the same subtype. Our results demonstrate that FFPE-smFISH is a reliable diagnostic assay and a powerful method for quantification of intra-tumor transcriptional heterogeneity of selected biomarkers in clinical samples.


bioRxiv | 2016

BLISS: quantitative and versatile genome-wide profiling of DNA breaks in situ

Winston X Yan; Reza Mirzazadeh; Silvano Garnerone; David Arthur Scott; Martin W. Schneider; Tomasz Kallas; Joaquin Custodio; Erik Wernersson; Linyi Gao; Yinqing Li; Yana Federova; Bernd Zetsche; Feng Zhang; Magda Bienko; Nicola Crosetto

We present a method for genome-wide DNA double-strand Breaks (DSBs) Labeling In Situ and Sequencing (BLISS) which, compared to existing methods, introduces several key features: 1) high efficiency and low input requirement by in situ DSB labeling in cells or tissue sections directly on a solid surface; 2) easy scalability by performing in situ reactions in multi-well plates; 3) high sensitivity by linearly amplifying tagged DSBs using in vitro transcription; and 4) accurate DSB quantification and control of PCR biases by using unique molecular identifiers. We demonstrate the ability to use BLISS to quantify natural and drug-induced DSBs in low-input samples of cancer cells, primary mouse embryonic stem cells, and mouse liver tissue sections. Finally, we applied BLISS to compare the specificity of CRISPR-associated RNA-guided endonucleases Cas9 and Cpf1, and found that Cpf1 has higher specificity than Cas9. These results establish BLISS as a versatile, sensitive, and efficient method for genome-wide DSB mapping in many applications.

Collaboration


Dive into the Magda Bienko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander van Oudenaarden

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Zhang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge