Magda-Viola Hanke
Julius Kühn-Institut
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Magda-Viola Hanke.
Planta | 2007
Houhua Li; Henryk Flachowsky; Thilo C. Fischer; Magda-Viola Hanke; Gert Forkmann; Dieter Treutter; Wilfried Schwab; Thomas Hoffmann; Iris Szankowski
Flavonoids are a large family of polyphenolic compounds with manifold functions in plants. Present in a wide range of vegetables and fruits, flavonoids form an integral part of the human diet and confer multiple health benefits. Here, we report on metabolic engineering of the flavonoid biosynthetic pathways in apple (Malus domestica Borkh.) by overexpression of the maize (Zea mays L.) leaf colour (Lc) regulatory gene. The Lc gene was transferred into the M. domestica cultivar Holsteiner Cox via Agrobacterium tumefaciens-mediated transformation which resulted in enhanced anthocyanin accumulation in regenerated shoots. Five independent Lc lines were investigated for integration of Lc into the plant genome by Southern blot and PCR analyses. The Lc-transgenic lines contained one or two Lc gene copies and showed increased mRNA levels for phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), flavanone 3 beta-hydroxylase (FHT), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin reductases (LAR), anthocyanidin synthase (ANS) and anthocyanidin reductase (ANR). HPLC-DAD and LC-MS analyses revealed higher levels of the anthocyanin idaein (12-fold), the flavan 3-ol epicatechin (14-fold), and especially the isomeric catechin (41-fold), and some distinct dimeric proanthocyanidins (7 to 134-fold) in leaf tissues of Lc-transgenic lines. The levels of phenylpropanoids and their derivatives were only slightly increased. Thus, Lc overexpression in Malus domestica resulted in enhanced biosynthesis of specific flavonoid classes, which play important roles in both phytopathology and human health.
Planta | 2009
Iris Szankowski; Henryk Flachowsky; Houhua Li; Heidrun Halbwirth; Dieter Treutter; Ionela Regos; Magda-Viola Hanke; Karl Stich; Thilo C. Fischer
We have investigated the consequences of blocking anthocyanin biosynthesis by silencing a key enzyme, anthocyanidin synthase, in transgenic plants of a red-leaved apple cultivar. This is complementary to a previous study of induction of anthocyanin biosynthesis by overexpressing a heterologous transcription factor. Analysis of these opposite phenotypes allows one to study anthocyanin functions in apple and to test the influence of the genetic manipulation on other, related metabolites. As expected, anthocyanin biosynthesis was almost completely blocked and this was accompanied by a shift in the profile of flavonoids and related polyphenols. Most interestingly, a rise in epicatechin was found. A severe reduction of viability by necrotic leaf lesions was also observed, suggesting an essential function of anthocyanins in apple.
Tree Physiology | 2012
Henryk Flachowsky; Iris Szankowski; Sascha Waidmann; Andreas Peil; Conny Tränkner; Magda-Viola Hanke
TFL1 is known as a floral repressor in Arabidopsis thaliana (L.) Heynh. In apple there are two TFL1 homologs, MdTFL1-1 and MdTFL1-2. The MdTFL1-1 gene was silenced in transgenic clones expressing a hairpin gene construct of a 323 bp fragment of MdTFL1-1. The hairpin gene construct was transferred to three different apple genotypes. Of 22 transgenic clones, 21 showed a significant reduction in MdTFL1-1 mRNA expression. Precocious flowering was obtained for 20 clones, which flowered already during in vitro cultivation. Nineteen clones could successfully be transferred to the greenhouse where 18 of them flowered within a few weeks followed by the death or at least a strongly inhibited vegetative growth of the plant. Most of the transgenic flowers developed abnormally. Results obtained on greenhouse-grown plants of the transgenic clones and transgenic seedlings clearly demonstrated the major role of MdTFL1 genes in maintaining the vegetative growth as prerequisite for a perennial lifecycle. It was shown that MdTFL1 dsRNAi promotes a life history similar to annual plants. Preliminary results obtained from grafting experiments with non-transgenic scions grafted onto MdTFL1 dsRNAi transgenic rootstocks indicated that the flower-inducing signal obtained after silencing of MdTFL1 genes seems not to be graft-transmissible.
Electronic Journal of Biotechnology | 2008
Henryk Flachowsky; Marko Riedel; Stefanie Reim; Magda-Viola Hanke
The generation of transgenic apple plants relies on the molecular analysis of transgene integration and expression based on polymerase chain reaction (PCR) analysis, blotting techniques and enzymatic assays on vitro leaves of putative transgenic regenerates. In order to assess the uniformity and the stability of transfer DNA (T-DNA) integration and gene expression, we studied 26 transgenic apple lines carrying the attacin E gene from Hyalophora cecropia , the β-glucuronidase gene, and the nptII gene. Plants were evaluated using standard molecular techniques, such as PCR, Southern blot, reverse transcription PCR (RT-PCR) and Enzyme Linked Immunosorbent Assay (ELISA), and propagated in vitro on non-selective antibiotic-free media for four years to mimic natural conditions in the field. In some T-lines transgene integration and expression did not remain stable; differences were also found between distinct plants of a single T-line. Individual plants with partially or completely silenced transgenes were identified as well as plants with non-detectable T-DNA. Several lines appeared chimeric or partially silenced. Although most molecular techniques can reliably detect the presence of transgenic cells, they often fail to detect mixtures of transformed and non-transformed cells, or cells with silenced transgenes. This should be taken into consideration, especially in the case of vegetatively propagated trees, where non-transformed or silenced plant parts could mistakenly be used as propagation material.
Gene | 2012
Katja Herzog; Henryk Flachowsky; Holger B. Deising; Magda-Viola Hanke
Production of marker-free genetically modified (GM) plants is one of the major challenges of molecular fruit breeding. Employing clean vector technologies, allowing the removal of undesired DNA sequences from GM plants, this goal can be achieved. The present study describes the establishment of a clean vector system in apple Malus×domestica Borkh., which is based on the use of the neomycin phosphotransferase II gene (nptII) as selectable marker gene and kanamycin/paramomycin as selective agent. The nptII gene can be removed after selection of GM shoots via site-specific excision mediated by heat-shock-inducible expression of the budding yeast FLP recombinase driven by the soybean Gmhsp17.5-E promoter. We created a monitoring vector containing the nptII and the flp gene as a box flanked by two direct repeats of the flp recognition target (FRT) sites. The FRT-flanked box separates the gusA reporter gene from the Cauliflower Mosaic Virus 35S (CaMV 35S) promoter. Consequently, GUS expression does only occur after elimination of the FRT-flanked box. Transformation experiments using the monitoring vector resulted in a total of nine transgenic lines. These lines were investigated for transgenicity by PCR, RT-PCR and Southern hybridization. Among different temperature regimes tested, exposure to 42 °C for 3.5 to 4h led to efficient induction of FLP-mediated recombination and removal of the nptII marker gene. A second round of shoot regeneration from leaf explants led to GM apple plants completely free of the nptII gene.
International Journal of Molecular Sciences | 2012
Henryk Flachowsky; Conny Tränkner; Iris Szankowski; Sascha Waidmann; Magda-Viola Hanke; Dieter Treutter; Thilo C. Fischer
RNA silencing describes the sequence specific degradation of RNA targets. Silencing is a non-cell autonomous event that is graft transmissible in different plant species. The present study is the first report on systemic acquired dsRNA-mediated gene silencing of transgenic and endogenous gene sequences in a woody plant like apple. Transgenic apple plants overexpressing a hairpin gene construct of the gusA reporter gene were produced. These plants were used as rootstocks and grafted with scions of the gusA overexpressing transgenic apple clone T355. After grafting, we observed a reduction of the gusA gene expression in T355 scions in vitro, but not in T355 scions grown in the greenhouse. Similar results were obtained after silencing of the endogenous Mdans gene in apple that is responsible for anthocyanin biosynthesis. Subsequently, we performed grafting experiments with Mdans silenced rootstocks and red leaf scions of TNR31-35 in order to evaluate graft transmitted silencing of the endogenous Mdans. The results obtained suggested a graft transmission of silencing signals in in vitro shoots. In contrast, no graft transmission of dsRNA-mediated gene silencing signals was detectable in greenhouse-grown plants and in plants grown in an insect protection tent.
Plant Biotechnology Journal | 2016
Elli A. Koskela; Anita Sønsteby; Henryk Flachowsky; Ola M. Heide; Magda-Viola Hanke; Paula Elomaa; Timo Hytönen
Summary The effects of daylength and temperature on flowering of the cultivated octoploid strawberry (Fragaria × ananassa Duch.) have been studied extensively at the physiological level, but information on the molecular pathways controlling flowering in the species is scarce. The flowering pathway has been studied at the molecular level in the diploid short‐day woodland strawberry (F. vesca L.), in which the FLOWERING LOCUS T1 (FvFT1)–SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (FvSOC1)–TERMINAL FLOWER1 (FvTFL1) pathway is essential for the correct timing of flowering. In this work, we show by transgenic approach that the silencing of the floral repressor FaTFL1 in the octoploid short‐day cultivar ‘Elsanta’ is sufficient to induce perpetual flowering under long days without direct changes in vegetative reproduction. We also demonstrate that although the genes FaFT1 and FaSOC1 show similar expression patterns in different cultivars, the regulation of FaTFL1 varies widely from cultivar to cultivar and is correlated with floral induction, indicating that the transcription of FaTFL1 occurs at least partially independently of the FaFT1–FaSOC1 module. Our results indicate that changing the expression patterns of FaTFL1 through biotechnological or conventional breeding approaches could result in strawberries with specific flowering and runnering characteristics including new types of everbearing cultivars.
Molecular Breeding | 2015
Juliane Würdig; Henryk Flachowsky; Andrea Saß; Andreas Peil; Magda-Viola Hanke
Cisgenic apple plants of two different cultivars were developed by transferring the Rvi6 scab resistance gene of Malus floribunda 821, using a new transformation vector based on the Flp/FRT recombinase system. Transformation experiments on seven different cultivars resulted in 22 transgenic lines for the cultivars ‘Brookfield Baigent’, ‘Mitchgla’, ‘Novajo’, and ‘Pinova’, whereby 16 lines thereof were resistant to Venturia inaequalis strain 104 (race 1). Analysis of the transgenic lines revealed Rvi6 mRNA expression levels comparable to several traditional bred Rvi6 containing cultivars and identified four transgenic lines, harboring a single T-DNA insertion, as suitable for the production of cisgenic lines. The T-DNA insertion site of these lines was determined, and lines were subject to induction of the recombinase system. Two cisgenic lines originating from the cultivars ‘Brookfield Baigent’ and ‘Pinova’ were obtained for which the exact excision of the recombinase cassette was confirmed by sequencing the previously determined T-DNA integration site. Further investigations revealed both cisgenic lines as fully resistant to V. inaequalis race 1. Rvi6 mRNA expression of the cisgenic lines and traditionally bred Rvi6 harboring cultivars was still comparable. The transformation vector developed is useable for the production of cisgenic apple plants to a certain extent.
Plant Physiology and Biochemistry | 2012
Henryk Flachowsky; Heidi Halbwirth; Dieter Treutter; Klaus Richter; Magda-Viola Hanke; Iris Szankowski; Christian Gosch; Karl Stich; Thilo C. Fischer
Transgenic antisense flavanone-3-hydroxylase apple plants were produced to mimic the effect of the agrochemical prohexadione-Ca on apple leaves. This enzyme inhibitor for 2-oxoglutarate dependent dioxygenases is used as a growth retardant and for control of secondary fire blight of leaves. Like using the agent, silencing of flavanone-3-hydroxylase leads to an accumulation of flavanones in leaves, but in contrast not to the formation of 3-deoxyflavonoids. In prohexadione-Ca treated leaves the 3-deoxyflavonoid luteoforol is formed from accumulating flavanones, acting as an antimicrobial compound against the fire blight pathogen Erwinia amylovora. Seemingly, the silencing of just one of the 2-oxoglutarate dependent dioxygenases (in apple also flavonol synthase and anthocyanidin synthase take part downstream in the pathway) does not provide a sufficiently high ratio of flavanones to dihydroflavonols. This seems to be needed to let the dihydroflavonol-4-reductase/flavanone-4-reductase enzyme reduce flavanones to luteoforol, and to let this be reduced by the leucoanthocyanidin-4-reductase/3-deoxyleucoanthocyanidin-4-reductase, each acting with their respective weak secondary activities. Accordingly, also the intended inducible resistance to fire blight by prohexadione-Ca is not observed with the antisense flavanone-3-hydroxylase apple plants. On the other hand, for most transgenic lines with strong flavanone-4-reductase down-regulation, up-regulation of gene expression for the other flavonoid genes was found. This provides further evidence for the feedback regulation of flavonoid gene expression having been previously reported for the prohexadione-Ca inhibited apple plants.
Planta | 2016
Olly Sanny Hutabarat; Henryk Flachowsky; Ionela Regos; Silvija Miosic; Christine M. Kaufmann; Shadab Faramarzi; Mohammed Zobayer Alam; Christian Gosch; Andreas Peil; Klaus Richter; Magda-Viola Hanke; Dieter Treutter; Karl Stich; Heidi Halbwirth
AbstractMain conclusionOverexpression of chalcone-3-hydroxylase provokes increased accumulation of 3-hydroxyphloridzin inMalus. Decreased flavonoid concentrations but unchanged flavonoid class composition were observed. The increased 3-hydroxyphlorizin contents correlate well with reduced susceptibility to fire blight and scab. The involvement of dihydrochalcones in the apple defence mechanism against pathogens is discussed but unknown biosynthetic steps in their formation hamper studies on their physiological relevance. The formation of 3-hydroxyphloretin is one of the gaps in the pathway. Polyphenol oxidases and cytochrome P450 dependent enzymes could be involved. Hydroxylation of phloretin in position 3 has high similarity to the B-ring hydroxylation of flavonoids catalysed by the well-known flavonoid 3′-hydroxylase (F3′H). Using recombinant F3′H and chalcone 3-hydroxylase (CH3H) from Cosmos sulphureus we show that F3′H and CH3H accept phloretin to some extent but higher conversion rates are obtained with CH3H. To test whether CH3H catalyzes the hydroxylation of dihydrochalcones in planta and if this could be of physiological relevance, we created transgenic apple trees harbouring CH3H from C. sulphureus. The three transgenic lines obtained showed lower polyphenol concentrations but no shift between the main polyphenol classes dihydrochalcones, flavonols, hydroxycinnamic acids and flavan 3-ols. Increase of 3-hydroxyphloridzin within the dihydrochalcones and of epicatechin/catechin within soluble flavan 3-ols were observed. Decreased activity of dihydroflavonol 4-reductase and chalcone synthase/chalcone isomerase could partially explain the lower polyphenol concentrations. In comparison to the parent line, the transgenic CH3H-lines showed a lower disease susceptibility to fire blight and apple scab that correlated with the increased 3-hydroxyphlorizin contents.