Magdalena Barancokova
Slovak Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Magdalena Barancokova.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 1999
M Somorovská; E Szabová; P Vodička; J Tulinská; Magdalena Barancokova; R Fábry; A Lı́šková; Z Riegerová; H Petrovská; J Kubová; K Rausová; Maria Dusinska; Andrew R. Collins
Several substances used in rubber processing are known to be genotoxic. Workers in a rubber tyre factory, exposed to a broad spectrum of contaminants such as benzo[a]pyrene, benzo-fluoranthene, naphthalene, acetonaphthene, alkenes and 1,3-butadiene have been regularly examined for several years: chromosomal aberrations in lymphocytes, mutagenicity of urine (by use of the Ames test) and various parameters of blood and urine were assessed. An elevated level of mercapturic acid derivatives was found in the urine of employees, which is indicative of environmental exposure to toxicants with alkylating activity. We have now extended this study by examining genotoxicity with the modified Comet assay in parallel with chromosomal aberrations and micronucleus formation as well as immunological endpoints. Twenty-nine exposed workers from this factory were compared with 22 non-exposed administrative staff working in the same factory, as well as with 22 laboratory workers. The absolute numbers of peripheral leukocytes were significantly higher in the exposed group than in either of the control groups (p < 0.001). The erythrocyte mean cell volume was significantly higher in exposed workers in comparison with laboratory controls (p < 0.05). Percentages of lymphocytes, polymorphonuclear leukocytes, monocytes and eosinophils were not altered. The proliferative response of T- and B-cells to mitogen treatment when calculated per number of lymphocytes and adjusted for smoking, age and years of exposure did not differ between exposed and control groups. Endogenous strand breaks (including alkali-labile sites) and altered bases (formamidopyrimidine glycosylase- and endonuclease III-sensitive sites) were measured by the Comet assay in lymphocyte DNA. Exposed workers had significantly elevated levels of DNA breaks compared with office workers (p < 0.00001) or with laboratory controls (p < 0.00001). Micronuclei occurred at significantly higher frequencies in the exposed group than in controls (p < 0.00001), though the frequencies were all within the normal range. Significant correlations were seen between individual values of strand breaks, micronuclei and chromatid/chromosome breaks and certain immunological parameters.
Nanotoxicology | 2015
Zuzana Magdolenova; Martina Drlickova; Kristi Henjum; Elise Rundén-Pran; Jana Tulinska; Dagmar Bilanicova; Giulio Pojana; Alena Kazimirova; Magdalena Barancokova; Miroslava Kuricova; Aurelia Liskova; Marta Staruchova; Fedor Čiampor; I. Vávra; Yolanda Lorenzo; Andrew R. Collins; Alessandra Rinna; Lise Fjellsbø; Katarina Volkovova; Antonio Marcomini; Mahmood Amiry-Moghaddam; Maria Dusinska
Abstract Surface coatings of nanoparticles (NPs) are known to influence advantageous features of NPs as well as potential toxicity. Iron oxide (Fe3O4) NPs are applied for both medical diagnostics and targeted drug delivery. We investigated the potential cytotoxicity and genotoxicity of uncoated iron oxide (U-Fe3O4) NPs in comparison with oleate-coated iron oxide (OC-Fe3O4) NPs. Testing was performed in vitro in human lymphoblastoid TK6 cells and in primary human blood cells. For cytotoxicity testing, relative growth activity, trypan blue exclusion, 3H-thymidine incorporation and cytokinesis-block proliferation index were assessed. Genotoxicity was evaluated by the alkaline comet assay for detection of strand breaks and oxidized purines. Particle characterization was performed in the culture medium. Cellular uptake, morphology and pathology were evaluated by electron microscopy. U-Fe3O4 NPs were found not to be cytotoxic (considering interference of NPs with proliferation test) or genotoxic under our experimental conditions. In contrast, OC-Fe3O4 NPs were cytotoxic in a dose-dependent manner, and also induced DNA damage, indicating genotoxic potential. Intrinsic properties of sodium oleate were excluded as a cause of the toxic effect. Electron microscopy data were consistent with the cytotoxicity results. Coating clearly changed the behaviour and cellular uptake of the NPs, inducing pathological morphological changes in the cells.
Nanotoxicology | 2015
Maria Dusinska; Sonja Boland; Margaret Saunders; Lucienne Juillerat-Jeanneret; Lang Tran; Giulio Pojana; Antonio Marcomini; Katarina Volkovova; Jana Tulinska; Lisbeth E. Knudsen; Lourdes Gombau; Maurice Whelan; Andrew R. Collins; Francelyne Marano; Christos Housiadas; D. Bilanicova; B. Halamoda Kenzaoui; S. Correia Carreira; Zuzana Magdolenova; Lise Maria Fjellsbø; Anna Huk; Richard D. Handy; Laura Walker; Magdalena Barancokova; Alena Bartonova; Enrico Burello; José V. Castell; H. Cowie; Martina Drlickova; Rina Guadagnini
Abstract In spite of recent advances in describing the health outcomes of exposure to nanoparticles (NPs), it still remains unclear how exactly NPs interact with their cellular targets. Size, surface, mass, geometry, and composition may all play a beneficial role as well as causing toxicity. Concerns of scientists, politicians and the public about potential health hazards associated with NPs need to be answered. With the variety of exposure routes available, there is potential for NPs to reach every organ in the body but we know little about the impact this might have. The main objective of the FP7 NanoTEST project (www.nanotest-fp7.eu) was a better understanding of mechanisms of interactions of NPs employed in nanomedicine with cells, tissues and organs and to address critical issues relating to toxicity testing especially with respect to alternatives to tests on animals. Here we describe an approach towards alternative testing strategies for hazard and risk assessment of nanomaterials, highlighting the adaptation of standard methods demanded by the special physicochemical features of nanomaterials and bioavailability studies. The work has assessed a broad range of toxicity tests, cell models and NP types and concentrations taking into account the inherent impact of NP properties and the effects of changes in experimental conditions using well-characterized NPs. The results of the studies have been used to generate recommendations for a suitable and robust testing strategy which can be applied to new medical NPs as they are developed.
Mutation Research | 2009
Alena Kažimı́rová; Magdalena Barancokova; Zuzana Džupinková; Ladislava Wsolova; Maria Dusinska
Life expectancy in central-Eastern European countries is more than 10 years lower compared with Northern or Western countries which could be the result of complex factors including genetics, nutrition and life style. We conducted a molecular epidemiological study with the aim of investigating links between DNA instability, genetic polymorphisms in nucleotide excision repair genes and ageing. Two groups-151 young people (78 women and 73 men) aged 20-25, and 140 elderly subjects (101 women and 39 men), aged 65-70 have been investigated. Results show elevated levels of micronuclei and chromosome aberrations in elderly compared with young groups (P<0.001); women had more micronuclei than men (P<0.001). Micronucleus frequencies were influenced by age (P<0.001). In the group of elderly people those who were homozygous with C/C or A/A in XPC IVS11 had more aberrant cells compared with C/A heterozygotes (P=0.04). When the dependent variable was break per cell, elderly people A/A homozygous in XPC IVS11 had more breaks per cell compared with C/A heterozygous or C/C homozygous subjects (P=0.03). Significantly the most chromatid breaks were found in elderly people both Lys/Lys homozygous in the XPD Lys751Gln genotype and C/C or A/A homozygous in the XPC IVS11 genotype (P<0.05). A General Linear Model analysis shows a statistically significant effect of interactions between age, sex and genotype XPC IVS11 (P=0.001) and age, sex and genotype XPCin9 (P=0.007) on number of chromatid breaks. When we divided people into two subgroups (without mutant allele and with one or two mutant alleles) we found a significantly higher number of chromosome exchanges in people with one or two variant polymorphism XPCin9 (P=0.04), XPC IVS11 (P=0.004) or XPCex15 (P=0.001). Level of cells with micronuclei was influenced by polymorphisms XPD Lys751Gln (P=0.03). However, we did not find any relationship between XPA polymorphism and studied cytogenetic biomarkers.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2012
Alena Kazimirova; Zuzana Magdolenova; Magdalena Barancokova; Marta Staruchova; Katarina Volkovova; Maria Dusinska
The in vitro genotoxicity of PLGA-PEO (poly-lactic-co-glycolic acid-polyethylene oxide copolymer) nanoparticles was assessed in TK6 cells using the comet assay as well as cytokinesis-block micronucleus (CBMN) assay. The cells were exposed to 0.12-75μg/cm² of PLGA-PEO nanoparticles during 2 and 24h for analysis in the comet assay, and to 3-75μg/cm² of these nanoparticles during 4, 24, 48 and 72h, respectively, for analysis in the CBMN assay. Two different protocols for treatment with cytochalasin B were used. We found that PLGA-PEO was neither cytotoxic (measured by relative cell growth activity and cytokinesis-block proliferation index (CBPI)), nor did it induce DNA strand-breaks (detected by the comet assay) or oxidative DNA lesions (measured by the comet assay modified with lesion-specific enzyme formamidopyrimidine-DNA-glycosylase). There were no statistically significant differences in the frequencies of micronucleated binucleated cells (MNBNCs) between untreated and treated cells in either of the conditions used. This suggests that PLGA-PEO did not have potential genotoxicity. However, using two experimental protocols of the micronucleus assay, PLGA-PEO nanoparticles showed a weak but significant increase in the level of MN in mononucleated cells, in cells treated for 48h with PLGA-PEO nanoparticles when cytochalasin B was added for the last 24h (1st protocol), and in cells treated for 24h with PLGA-PEO nanoparticles followed by washing of NPs and addition of cytochalasin B for another 24h (2nd protocol). It remains unclear whether the increase of MNMNC after treatment with PLGA-PEO nanoparticles is the effect of a possible, weak aneugenic potential or early effect of these particles, or due to another reason. These results suggest that aneugenicity in addition to clastogenicity may be considered as an important biomarker when assessing the genotoxic potential of polymeric nanoparticles.
Nanotoxicology | 2015
Jana Tulinska; Alena Kazimirova; Miroslava Kuricova; Magdalena Barancokova; Aurelia Liskova; Eva Neubauerova; Martina Drlickova; Fedor Čiampor; I. Vávra; Dagmar Bilanicova; Giulio Pojana; Marta Staruchova; Mira Horvathova; Eva Jahnova; Katarina Volkovova; Mária Bartušová; Michal Cagalinec; Maria Dusinska
Abstract A human blood cell model for immunotoxicity and genotoxicity testing was used to measure the response to polylactic-co-glycolic acid (PLGA-PEO) nanoparticle (NP) (0.12, 3, 15 and 75 μg/cm2 exposure in fresh peripheral whole blood cultures/isolated peripheral blood mononuclear cell cultures from human volunteers (n = 9–13). PLGA-PEO NPs were not toxic up to dose 3 μg/cm2; dose of 75 μg/cm2 displays significant decrease in [3H]-thymidine incorporation into DNA of proliferating cells after 4 h (70% of control) and 48 h (84%) exposure to NPs. In non-cytotoxic concentrations, in vitro assessment of the immunotoxic effects displayed moderate but significant suppression of proliferative activity of T-lymphocytes and T-dependent B-cell response in cultures stimulated with PWM > CON A, and no changes in PHA cultures. Decrease in proliferative function was the most significant in T-cells stimulated with CD3 antigen (up to 84%). Cytotoxicity of natural killer cells was suppressed moderately (92%) but significantly in middle-dosed cultures (4 h exposure). On the other hand, in low PLGA-PEO NPs dosed cultures, significant stimulation of phagocytic activity of granulocytes (119%) > monocytes (117%) and respiratory burst of phagocytes (122%) was recorded. Genotoxicity assessment revealed no increase in the number of micronucleated binucleated cells and no induction of SBs or oxidised DNA bases in PLGA-PEO-treated cells. To conclude on immuno- and genotoxicity of PLGA-PEO NPs, more experiments with various particle size, charge and composition need to be done.
Genes, Chromosomes and Cancer | 2015
Kari Hemminki; Christoph Frank; Asta Försti; Ludovit Musak; Alena Kazimirova; Magdalena Barancokova; Alexandra Horská; Veronika Vymetalkova; Zdenek Smerhovsky; Alessio Naccarati; Pavel Soucek; Ludmila Vodickova; Janka Buchancova; Bozena Smolkova; Maria Dusinska; Pavel Vodicka
Nonspecific chromosomal aberrations (CAs) are found in about 1% of lymphocytes drawn from healthy individuals. They include chromosome‐type aberrations (CSAs), which are increased in exposure to ionizing radiation, and chromatid‐type aberrations (CTAs) which in experimental systems are formed by DNA binding carcinogens and mutagens. The frequency of CAs is associated with the risk of cancer, but the causes of CAs in general population are unknown. Here, we want to test whether variants in metabolic genes associate with CAs in healthy volunteers. Cases were considered those whose total CA (CAtot) frequency was >2% and for CSA and CTA the limit was >1%. Controls had lower frequencies of CAs. Functional polymorphisms in seven genes were selected for analysis: cytochrome P450 1B1 (CYP1B1), epoxide hydrolase 1 (EPHX1), NAD(P)H:quinone oxidoreductase 1 (NQO1), each coding for phase 1 enzymes, and glutathione S‐transferase P1 (GSTP1), glutathione S‐transferases M1 (GSTM1) and T1 (GSTT1), coding for enzymes which conjugate reactive metabolites, that is, phase 2 enzymes. The number of volunteers genotyped for each gene varied from 550 to 1,500. Only EPHX1 was individually associated with CAtot; high activity genotypes decreased CAtot. A total of six significant (P < 0.01) pair‐wise interactions were observed, most including a GST variant as one of the pair. In all genotype combinations with significant odds ratios for CAs a GST variant was involved. The present data provide evidence that variants in genes coding for metabolic enzymes, which individually have small effects, interact and are associated with CA frequencies in peripheral lymphocytes of healthy volunteers.
Nutrition and Cancer | 2002
Darina Slamenova; Ivan Chalupa; Sona Robichova; Alena Gábelová; Timea Farkašová; L'ubica Hrusovska; Gabriela Bačová; Lı́via Šebová; Peter Eckl; Nikolaus Bresgen; Peter Zeitheim; Peter Schneider; Ladislava Wsolova; Magdalena Barancokova; Alena Kazimirova; Jana Navarová; Š. Bezek
Hepatocytes freshly isolated from male Wistar rats fed a common diet or a vitamin A- or vitamin E-supplemented diet (each for 21, 28, or 41 days) were assayed for sensitivity to DNA breakage and cytogenetic changes induced by carcinogens. Different indirectly acting carcinogens were assayed. N-nitrosomorpholine (NMOR) was the only agent that induced DNA breaks, chromosomal aberrations, and micronuclei in all experiments. Benzo[a]pyrene (B[a]p) and dimethyldibenzo[c,g]carbazole (diMeDBC) induced only DNA breaks in all experiments. Occasionally, B[a]P induced chromosomal aberrations and micronuclei, and diMeDBC induced micronuclei, but not chromosomal aberrations. These results demonstrated that the tested carcinogens assayed at concentrations highly effective in a hypoxanthine phosphoribosyltransferase/V79 system significantly increased DNA damage, while cytogenetic changes were less frequent. In hepatocytes from rats fed vitamin A, a reduction in the severity of all three end points was observed after NMOR treatment. After B[a]P treatment, we found a reduction in DNA breaks and chromosomal aberrations; after treatment with diMeDBC, we observed a reduction in DNA breaks. Treatment with vitamin E was less effective: it reduced DNA strand breaks induced by B[a]P and partially reduced those induced by diMeDBC and NMOR and the level of micronuclei induced by NMOR and B[a]P. Both vitamins reduced the level of DNA strand breaks induced by the oxidative effect of a visible light-excited photosensitizer.
Carcinogenesis | 2015
Pavel Vodicka; Ludovit Musak; Christoph Frank; Alena Kazimirova; Veronika Vymetalkova; Magdalena Barancokova; Bozena Smolkova; Zuzana Dzupinkova; Katerina Jiraskova; Sona Vodenkova; Michal Kroupa; Oto Osina; Alessio Naccarati; Fabrizio Palitti; Asta Försti; Maria Dusinska; Ludmila Vodickova; Kari Hemminki
Human cancers are often associated with numerical and structural chromosomal instability. Structural chromosomal aberrations (CAs) in peripheral blood lymphocytes (PBL) arise as consequences of direct DNA damage or due to replication on a damaged DNA template. In both cases, DNA repair is critical and inter-individual differences in its capacity are probably due to corresponding genetic variations. We investigated functional variants in DNA repair genes (base and nucleotide excision repair, double-strand break repair) in relation to CAs, chromatid-type aberrations (CTAs) and chromosome-type aberrations (CSAs) in healthy individuals. Chromosomal damage was determined by conventional cytogenetic analysis. The genotyping was performed by both restriction fragment length polymorphism and TaqMan allelic discrimination assays. Multivariate logistic regression was applied for testing individual factors on CAs, CTAs and CSAs. Pair-wise genotype interactions of 11 genes were constructed for all possible pairs of single-nucleotide polymorphisms. Analysed individually, we observed significantly lower CTA frequencies in association with XPD Lys751Gln homozygous variant genotype [odds ratio (OR) 0.64, 95% confidence interval (CI) 0.48-0.85, P = 0.004; n = 1777]. A significant association of heterozygous variant genotype in RAD54L with increased CSA frequency (OR 1.96, 95% CI 1.01-4.02, P = 0.03) was determined in 282 subjects with available genotype. By addressing gene-gene interactions, we discovered 14 interactions significantly modulating CAs, 9 CTAs and 12 CSAs frequencies. Highly significant interactions included always pairs from two different pathways. Although individual variants in genes encoding DNA repair proteins modulate CAs only modestly, several gene-gene interactions in DNA repair genes evinced either enhanced or decreased CA frequencies suggesting that CAs accumulation requires complex interplay between different DNA repair pathways.
Environmental Research | 2016
Alena Kazimirova; Pavlína Peikertová; Magdalena Barancokova; Marta Staruchova; Jana Tulinska; Miroslav Vaculík; Ivo Vávra; Jana Kukutschová; Peter Filip; Maria Dusinska
Motor vehicle exhaust and non-exhaust processes play a significant role in environmental pollution, as they are a source of the finest particulate matter. Emissions from non-exhaust processes include wear-products of brakes, tires, automotive hardware, road surface, and traffic signs, but still are paid little attention to. Automotive friction composites for brake pads are composite materials which may consist of potentially hazardous materials and there is a lack of information regarding the potential influence of the brake wear debris (BWD) on the environment, especially on human health. Thus, we focused our study on the genotoxicity of the airborne fraction of BWD using a brake pad model representing an average low-metallic formulation available in the EU market. BWD was generated in the laboratory by a full-scale brake dynamometer and characterized by Raman microspectroscopy, scanning electron microscopy, and transmission electron microscopy showing that it contains nano-sized crystalline metal-based particles. Genotoxicity tested in human lymphocytes in different testing conditions showed an increase in frequencies of micronucleated binucleated cells (MNBNCs) exposed for 48h to BWD nanoparticles (NPs) (with 10% of foetal calf serum in culture medium) compared with lymphocytes exposed to medium alone, statistically significant only at the concentration 3µg/cm(2) (p=0.032).