Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Magdalena Gozdowska is active.

Publication


Featured researches published by Magdalena Gozdowska.


Hormones and Behavior | 2012

Brain levels of arginine–vasotocin and isotocin in dominant and subordinate males of a cichlid fish

Olinda Almeida; Magdalena Gozdowska; Ewa Kulczykowska; Rui Filipe Oliveira

The nonapeptides arginine-vasotocin (AVT) and isotocin (IT), which are the teleost homologues of arginine-vasopressin and oxytocin in mammals, have well established peripheral effects on osmoregulation and stress response, and central effects on social behavior. However, all studies that have looked so far into the relationship between these nonapeptides and social behavior have used indirect measures of AVT/IT activity (i.e. immunohistochemistry of AVT/IT immunoreactive neurons, or AVT/IT or their receptors mRNA expression with in situ hybridization or qPCR) and therefore direct measures of peptide levels in relation to social behavior are still lacking. Here we use a recently developed high-performance liquid chromatography analysis with fluorescence detection (HPLC-FL) method to quantify the levels of both AVT and IT in macro-dissected brain areas [i.e. olfactory bulbs, telencephalon, diencephalon, optic tectum, cerebellum, and hindbrain (= rhombencephalon minus cerebellum)] and pituitary of dominant and subordinate male cichlid fish (Oreochromis mossambicus). The pituitary shows higher levels of both peptides than any of the brain macroareas, and the olfactory bulbs have the highest AVT among all brain areas. Except for IT in the telencephalon there is a lack of correlations between central levels and pituitary peptide levels, suggesting an independent control of hypophysial and CNS nonapeptide secretion. There were also no correlations between AVT and IT levels either for each brain region or for the pituitary gland, suggesting a decoupled activity of the AVT and IT systems at the CNS level. Subordinate AVT pituitary levels are significantly higher than those of dominants, and dominant hindbrain IT levels are significantly higher than those of subordinates, suggesting a potential involvement of AVT in social stress in subordinate fish and of IT in the regulation of dominant behavior at the level of the hindbrain. Since in this species dominant males use urine to communicate social status and since AVT is known to have an antidiuretic effect, we have also investigated the effect of social status on urine storage. As predicted, dominant males stored significantly more urine than subordinates. Given these results we suggest that AVT/IT play a key role in orchestrating social phenotypes, acting both as central neuromodulators that promote behavioral plasticity and as peripheral hormones that promote integrated physiological changes.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2013

Vasotocinergic and isotocinergic systems in the gilthead sea bream (Sparus aurata): An osmoregulatory story

Juan Antonio Martos-Sitcha; Yvette S. Wunderink; Magdalena Gozdowska; Ewa Kulczykowska; Juan Miguel Mancera; Gonzalo Martínez-Rodríguez

To investigate the physiological roles of arginine vasotocin (AVT) and isotocin (IT) in osmoregulatory process in gilthead sea bream (Sparus aurata), a time course study (0, 12h, and 1, 3, 7 and 14 days) has been performed in specimens submitted to hypoosmotic (from 40‰ salinity to 5‰ salinity) or hyperosmotic (from 40‰ salinity to 55‰ salinity) challenges. Plasma and liver osmoregulatory and metabolic parameters, as well as AVT and IT pituitary contents were determined concomitantly with hypothalamic pro-vasotocin (pro-VT) and pro-isotocin (pro-IT) mRNA expression levels. Previously, sequences coding for pro-VT and pro-IT cDNAs were cloned. Two osmoregulatory periods related to plasma osmolality and metabolic parameter variations could be distinguished: i) an adaptative period, from 12h to 3 days after transfer, and ii) a chronic regulatory period, starting at day 3 after transfer. Higher values in hypothalamic pro-VT and pro-IT mRNA expression as well as in pituitary AVT and IT storage levels in both hypo- and/or hyper-osmotic transfers have been distinguished. These increase correlated with changes in plasma cortisol levels, suggesting an interaction between this hormone and pro-VT expression. Furthermore, pro-IT expression enhancement also suggests a role of the isotocinergic system as a modulator in the acute stress response induced by hyper-osmotic challenge in S. aurata.


Royal Society Open Science | 2015

Brain nonapeptide levels are related to social status and affiliative behaviour in a cooperatively breeding cichlid fish.

Adam R. Reddon; Constance M. O'Connor; Susan E. Marsh-Rollo; Sigal Balshine; Magdalena Gozdowska; Ewa Kulczykowska

The mammalian nonapeptide hormones, vasopressin and oxytocin, are known to be potent regulators of social behaviour. Teleost fishes possess vasopressin and oxytocin homologues known as arginine vasotocin (AVT) and isotocin (IT), respectively. The role of these homologous nonapeptides in mediating social behaviour in fishes has received far less attention. The extraordinarily large number of teleost fish species and the impressive diversity of their social systems provide us with a rich test bed for investigating the role of nonapeptides in regulating social behaviour. Existing studies, mostly focused on AVT, have revealed relationships between the nonapeptides, and both social behaviour and dominance status in fishes. To date, much of the work on endogenous nonapeptides in fish brains has measured genomic or neuroanatomical proxies of nonapeptide production rather than the levels of these molecules in the brain. In this study, we measure biologically available AVT and IT levels in the brains of Neolamprologus pulcher, a cooperatively breeding cichlid fish, using high performance liquid chromatography with fluorescence detection. We found that brain AVT levels were higher in the subordinate than in dominant animals, and levels of IT correlated negatively with the expression of affiliative behaviour. We contrast these results with previous studies, and we discuss the role the nonapeptide hormones may play in the regulation of social behaviour in this highly social animal.


The Journal of Experimental Biology | 2015

Cortisol modulates vasotocinergic and isotocinergic pathways in the gilthead sea bream

Laura Cádiz; Javier Román-Padilla; Magdalena Gozdowska; Ewa Kulczykowska; Gonzalo Martínez-Rodríguez; Juan Miguel Mancera; Juan Antonio Martos-Sitcha

In the present study, we assessed the responses of the vasotocinergic and isotocinergic systems to chronic stress induced by cortisol administration in the gilthead sea bream (Sparus aurata). Pituitary and plasma arginine vasotocin (AVT) and isotocin (IT) levels, as well as hypothalamic pro-vasotocin (pro-VT) and pro-isotocin (pro-IT) mRNA expression levels, were analysed. In addition, the mRNA levels of three receptors, AVTR type V1a2, AVTR type V2 and ITR, were analysed in several target organs associated with the following physiological processes: (i) integration and control (hypothalamus), (ii) metabolism and its control (liver and hypothalamus), (iii) osmoregulation (gills) and (iv) stress response (head kidney). Specimens were injected intraperitoneally with slow-release implants (5 μL g−1 body mass) containing coconut oil alone (control group) or with cortisol (50 μg g−1 body mass; cortisol group). Both AVT and IT synthesis and release were correlated with plasma cortisol values, suggesting a potential interaction between both hormonal systems and cortisol administration. Our results suggest that the activation of hepatic metabolism as well as the hypothalamic control of metabolic processes provide the energy necessary to overcome stress, which could be partly mediated by AVTRs and ITR. Upregulation of branchial AVT and IT receptor expression following cortisol treatment suggests an involvement of the vasotocinergic and isotocinergic systems in the regulation of ion channels/transporters during stressful situations. Finally, changes in AVT and IT receptor mRNA expression in the head kidney suggest these nonapeptides participate in feedback mechanisms that regulate the synthesis/release of cortisol. Our results indicate a relationship between cortisol and both the vasotocinergic and isotocinergic systems during simulated chronic stress in S. aurata.


Hormones and Behavior | 2016

Agonistic interactions elicit rapid changes in brain nonapeptide levels in zebrafish

Magda Teles; Magdalena Gozdowska; Hanna Kalamarz-Kubiak; Ewa Kulczykowska; Rui Filipe Oliveira

The teleost fish nonapeptides, arginine vasotocin (AVT) and isotocin (IT), have been implicated in the regulation of social behavior. These peptides are expected to be involved in acute and transient changes in social context, in order to be efficient in modulating the expression of social behavior according to changes in the social environment. Here we tested the hypothesis that short-term social interactions are related to changes in the level of both nonapeptides across different brain regions. For this purpose we exposed male zebrafish to two types of social interactions: (1) real opponent interactions, from which a Winner and a Loser emerged; and (2) mirror-elicited interactions, that produced individuals that did not experience a change in social status despite expressing similar levels of aggressive behavior to those of participants in real-opponent fights. Non-interacting individuals were used as a reference group. Each social phenotype (i.e. Winners, Losers, Mirror-fighters) presented a specific brain profile of nonapeptides when compared to the reference group. Moreover, the comparison between the different social phenotypes allowed to address the specific aspects of the interaction (e.g. assessment of opponent aggressive behavior vs. self-assessment of expressed aggressive behavior) that are linked with neuropeptide responses. Overall, agonistic interactions seem to be more associated with the changes in brain AVT than IT, which highlights the preferential role of AVT in the regulation of aggressive behavior already described for other species.


Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology | 2017

The effect of starvation and re-feeding on vasotocinergic and isotocinergic pathways in immature gilthead sea bream (Sparus aurata)

Arleta Krystyna Skrzynska; Magdalena Gozdowska; Ewa Kulczykowska; Gonzalo Martínez-Rodríguez; Juan Miguel Mancera; Juan Antonio Martos-Sitcha

This study describes the responses of the vasotocinergic and isotocinergic systems to food deprivation and re-feeding processes in immature gilthead sea bream (Sparus aurata). The animals were subjected to the following experimental treatments: (1) normal feeding (control), (2) food deprivation for 21 days; and (3) re-feeding for 7 days, beginning 14 days after starvation. The animals were sampled at 0, 7, 14 and 21 days from the beginning of the trial. The pituitary and plasma arginine vasotocin (AVT) and isotocin (IT) levels and the hypothalamic pro-vasotocin and pro-isotocin mRNA expression levels were measured. In addition, the mRNA levels of three receptors, avtr v1, avtr v2 and itr, were analyzed in target organs associated with (1) the integration and control of different physiological pathways related to stress and food intake (i.e., the hypothalamus), (2) hormonal release into the bloodstream (i.e., the pituitary), and (3) metabolism and its control (i.e., the liver). The metabolic parameters in the liver were also determined. The hepatosomatic index decreased, and hepatic metabolites were mobilized beginning in the early stages of starvation. Moreover, an over-compensation of these parameters occurred when the fish were re-fed after starvation. In terms of the vasotocinergic and isotocinergic systems, feed restriction induced a clear time-dependent regulation among metabolic organization, stress regulation and orexigenic processes in the mature hormone concentration and pro-peptide and receptor mRNA expression. Our results reveal the important role of the AVT/IT endocrine systems in the orchestration of fish physiology during starvation and re-feeding and indicate their involvement in both central and peripheral organs.


Biology Open | 2015

Brain nonapeptide and gonadal steroid responses to deprivation of heterosexual contact in the black molly.

Ewa Kulczykowska; Hanna Kalamarz-Kubiak; Marta Nietrzeba; Magdalena Gozdowska

ABSTRACT Fish may respond to different social situations with changes in both physiology and behaviour. A unique feature of fish is that social interactions between males and females strongly affect the sexual characteristics of individuals. Here we provide the first insight into the endocrine background of two phenomena that occur in mono-sex groups of the black molly (Poecilia sphenops): masculinization in females and same-sex sexual behaviour, manifested by gonopodial displays towards same-sex tank mates and copulation attempts in males. In socially controlled situations, brain neurohormones impact phenotypic sex determination and sexual behaviour. Among these hormones are the nonapeptides arginine vasotocin (AVT) and isotocin (IT), counterparts of the well-known mammalian arginine vasopressin and oxytocin, respectively. To reveal potential hormone interactions, we measured the concentrations of bioactive AVT and IT in the brain, along with those of the sex steroids 17&bgr;-estradiol and 11-ketotestosterone in the gonads, of females, masculinized females, males displaying same-sex sexual behaviour and those who did not. These data were supplemented by morphological and histological analyses of the gonads. Correlations between brain nonapeptides and gonadal steroids strongly suggest a cross talk between hormonal systems. In the black molly, the masculinization process was associated with the production of brain AVT and gonadal steroids, whereas same-sex sexual behaviour involves both brain nonapeptides, but neither of the sex steroids. This study extends current knowledge of endocrine control of phenotypic sex and sexual behaviour in fish and for the first time links brain nonapeptides with the occurrence of male-male sexual behaviour in lower vertebrates.


PLOS ONE | 2017

Region specific changes in nonapeptide levels during client fish interactions with allopatric and sympatric cleaner fish

Marta C. Soares; Sónia C. Cardoso; Renata Mazzei; Gonçalo I. André; Marta Morais; Magdalena Gozdowska; Hanna Kalamarz-Kubiak; Ewa Kulczykowska; Sylvie Rétaux

Social relationships are crucially dependent on individual ability to learn and remember ecologically relevant cues. However, the way animals recognize cues before engaging in any social interaction and how their response is regulated by brain neuromodulators remains unclear. We examined the putative involvement of arginine vasotocin (AVT) and isotocin (IT), acting at different brain regions, during fish decision-making in the context of cooperation, by trying to identify how fish distinguish and recognize the value of other social partners or species. We hypothesized that the behavioural responses of cleaner fish clients to different social contexts would be underlain by changes in brain AVT and IT levels. We have found that changes in AVT at the level of forebrain and optic tectum are linked with a response to allopatric cleaners (novel or unfamiliar stimuli) while those at cerebellum are associated with the willingness to be cleaned (in response to sympatric cleaners). On the other hand, higher brain IT levels that were solely found in the diencephalon, also in response to allopatric cleaners. Our results are the first to implicate these nonapeptides, AVT in particular, in the assessment of social cues which enable fish to engage in mutualistic activities.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2017

The time enzyme in melatonin biosynthesis in fish: Day/night expressions of three aralkylamine N-acetyltransferase genes in three-spined stickleback

Ewa Kulczykowska; Agnieszka Kleszczyńska; Magdalena Gozdowska; Ewa Sokołowska

In vertebrates, aralkylamine N-acetyltransferase (AANAT; EC 2.3.1.87) is a time-keeping enzyme in melatonin (Mel) biosynthesis. Uniquely in fish, there are several AANAT isozymes belonging to two AANAT subfamilies, AANAT1 and AANAT2, which are encoded by distinct genes. The different substrate preferences, kinetics and spatial expression patterns of isozymes indicate that they may have different functions. In the three-spined stickleback (Gasterosteus aculeatus), there are three genes encoding three AANAT isozymes. In this study, for the first time, the levels of aanat1a, aanat1b and aanat2 mRNAs are measured by absolute RT-qPCR in the brain, eye, skin, stomach, gut, heart and kidney collected at noon and midnight. Melatonin levels are analysed by HPLC with fluorescence detection in homogenates of the brain, eye, skin and kidney. The levels of aanats mRNAs differ significantly within and among organs. In the brain, eye, stomach and gut, there are day/night variations in aanats mRNAs levels. The highest levels of aanat1a and aanat1b mRNAs are in the eye. The extremely high expressions of these genes which are reflected in the highest Mel concentrations at this site at noon and midnight strongly suggest that the eye is an important source of the hormone in the three-spined sticklebacks. A very low level of aanat2 mRNA in all organs may suggest that AANAT1a and/or AANAT1b are principal isozymes in the three-spine sticklebacks. A presence of the isozymes of defined substrate preferences provides opportunity for control of acetylation of amines by modulation of individual aanat expression and permits the fine-tuning of indolethylamines and phenylethylamines metabolism to meet the particular needs of a given organ.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2018

Cortisol and melatonin in the cutaneous stress response system of fish

Ewa Kulczykowska; Hanna Kalamarz-Kubiak; Magdalena Gozdowska; Ewa Sokołowska

The stress hormone cortisol, together with antioxidants, melatonin (Mel) and its biologically active metabolites, 5-methoxykynuramines, including AFMK, set up a local stress response system in mammalian skin. Our in vitro study of the European flounder (Platichthys flesus) was designed to examine whether Mel and AFMK would respond to cortisol while a glucocorticoid is added to the incubation medium. The concentrations of cortisol in the incubation medium mimic plasma cortisol levels seen in fish exposed to different types of stresses such as handling, confinement, high density, food-deprivation or air-exposure. We measured Mel and AFMK in skin explants and culture media using high-performance liquid chromatography (HPLC) with fluorescence detection. We also analysed melanosome response (dispersion/aggregation) in the explants subjected to the different treatments. Cortisol stimulated the release of Mel and AFMK from skin explants in a dose-dependent manner. Melanosome dispersion and a darkening of the skin explants were observed after incubation with cortisol. This study is the first to demonstrate the interrelationship between cortisol and Mel/AFMK in fish skin. Our data strongly suggest that the cutaneous stress response system (CSRS) is present in fish. The question remains whether Mel, AFMK or cortisol are synthetized locally in fish skin and/or transported by the bloodstream. The presence of the CSRS should be taken into account during elaboration of new indicators of fish welfare both in aquaculture and in the wild.

Collaboration


Dive into the Magdalena Gozdowska's collaboration.

Top Co-Authors

Avatar

Ewa Kulczykowska

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Antonio Martos-Sitcha

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ewa Sokołowska

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hanna Kalamarz

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge